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who knows mixture models?
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who loves mixture models?
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c(X) =
∑K

i=1
wici(X), with wi ≥ 0,

∑K

i=1
wi = 1
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GMMs
as computational graphs
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p(X) = w1 · p1(X1)+w2 · p2(X1)

⇒ translating inference to data structures…
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GMMs
as computational graphs

X1

0.8

0.2

p(X1) = 0.2·p1(X1)+0.8·p2(X1)

⇒ …e.g., as a weighted sum unit over Gaussian input distributions
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GMMs
as computational graphs
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p(X = 1) =0.2 · p1(X1 = 1)

+0.8 · p2(X1 = 1)

⇒ inference = feedforward evaluation
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GMMs
as computational graphs
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A simplified notation:

⇒ scopes attached to inputs
⇒ edge directions omitted
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GMMs
as computational graphs

p(X) =w1 · p1(XL
1) · p1(XR

1 )+

w2 · p2(XL
2) · p2(XR

2 )

⇒ local factorizations…
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GMMs
as computational graphs
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⇒ …are product units
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probabilistic circuits (PCs)
a grammar for tractable computational graphs

X1
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I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit
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probabilistic circuits (PCs)
a grammar for tractable computational graphs
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deep mixtures
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deep mixtures
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an exponential number of mixture components!
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circuits
(and variants)

everywhere
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enforce constraints in neural networks at NeurIPS 2022
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extending it to SMT constraints
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constrained text generation with LLMs (ICML 2023)
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reliable reinforcement learning (AAAI 23)
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enforce constraints in knowledge graph embeddings
oral at NeurIPS 2023
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Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

A: (albatross, IsA, bird)
B: (albatross, IsA, fish)

Is an albatross a bird?

Forward Implication
A → ¬B

Yes.

Is an albatross a fish?

No.

B: (albatross, IsNotA, organism)
A: (albatross, IsNotA, living thing)

Is it true that an albatross is 
not an organism?

Reverse Implication
¬B → ¬A

No.

Is it true that an albatross is 
not a living thing?

Yes.

A: (computer, IsA, airplane)
Ã: (computer, IsNotA, airplane)

Is a computer a airplane?

Negation
A ⊕ Ã

No.

Is it true that a computer is not 
a airplane?

No.Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

= 
LL

aM
a 

2
= 

Lo
C

o-
LL

aM
a 

2

improving logical (self-)consistency in LLMs at ICLR 2025
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cirkitkit
learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit
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c(X) =
∑K

i=1
wici(X), with wi ≥ 0,

∑K

i=1
wi = 1

image taken from Hao Tang’s course on ASR 19/53



additive MMs
are so cool!

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)

easily represented as shallow PCs

these aremonotonic PCs

if marginals/conditionals are tractable for the compo-
nents, they are tractable for the MM

universal approximators…
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however…
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however…

GMM (K = 2)
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however…

GMM (K = 2) GMM (K = 16)
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however…

GMM (K = 2) GMM (K = 16) nGMM2 (K = 2)
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spoiler

shallow mixtures
with negative parameters
can be exponentially more compact than
deep ones with positive parameters.

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 22/53



subtractive MMs

also called negative/signed/subtractiveMMs
⇒ or non-monotonic circuits,…

issue: how to preserve non-negative outputs?

well understood for simple parametric forms
e.g., Weibulls, Gaussians

⇒ constraints on variance, mean

23/53



subtractive MMs

also called negative/signed/subtractiveMMs
⇒ or non-monotonic circuits,…

issue: how to preserve non-negative outputs?

well understood for simple parametric forms
e.g., Weibulls, Gaussians

⇒ constraints on variance, mean

23/53



subtractive MMs

also called negative/signed/subtractiveMMs
⇒ or non-monotonic circuits,…

issue: how to preserve non-negative outputs?

well understood for simple parametric forms
e.g., Weibulls, Gaussians

⇒ constraints on variance, mean
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tl;dr

“Understand when and how
we can use negative parameters
in deep subtractive mixture models”
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tl;dr

“Understand when and how
we can use negative parameters
in deep non-monotonic squared circuits”

25/53



subtractive MMs as circuits

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)a non-monotonic smooth and (structured)
decomposable circuit

⇒ possibly with negative outputs

c(X) =
∑K

i=1
wici(X), wi ∈ R,
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squaring shallow MMs

( w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X))2

c2(X) =
(∑K

i=1
wici(X)

)2
⇒ ensure non-negative output
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squaring shallow MMs

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)

c2(X) =
(∑K

i=1
wici(X)

)2
=
∑K

i=1

∑K

j=1
wiwjci(X)cj(X)
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squaring shallow MMs

w1 w2 w3 w2
1 w2

2 w2
3

2w1w2
2w2w3

2w1w3

c1 c2 c3 c21 c22 c23 c1c2 c1c3 c2c3

c(X) c2(X)

c2(X) =
(∑K

i=1
wici(X)

)2
=
∑K

i=1

∑K

j=1
wiwjci(X)cj(X)

still a smooth and (str) decomposable PC withO(K2) components!
⇒ but stillO(K) parameters
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wait…

“do negative parameters
really boost expressiveness?
and…always?”
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theorem

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large

monotonic circuits…

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 30/53



theorem

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...( )
2

…but compact

squared non-monotonic circuits

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 30/53



(
X1

X1

X2

X2

×

×

X3

X3

×

×

X4

X4

×

× )2

how to efficiently square (and renormalize) a deep PC?

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 31/53



compositional inference I

1 from cirkit.symbolic.functional import integrate, multiply
2

3 #
4 # create a deep circuit
5 c = build_symbolic_circuit('quad-tree-4')
6

7 #
8 # compute the partition function of c^2
9 def renormalize(c):

10 c2 = multiply(c, c)
11 return integrate(c2)

32/53

cirkitkit



probabilistic circuits (PCs)
the unit-wise definition

X1
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probabilistic circuits (PCs)
the unit-wise definition

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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probabilistic circuits (PCs)
a tensorized definition
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c(x) = l(x)⊙ r(x) // Hadamard
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c(x) = vec(l(x)r(x)⊤) // Kronecker
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probabilistic circuits (PCs)
a tensorized definition

Wp1q Wp2q

Wp3q

34/53

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

stack layers to build a deep circuit!



circuits layers
as tensor factorizations

W

Vp1q

Vp2q

Vp3q

x1

x2

x3

T

x2

x3 x1

«

cpx1, x2, x3q

wijk

v
p1q
x11

v
p1q
x12

v
p2q
x21

v
p2q
x22

v
p3q
x31

v
p3q
x32

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, TMLR, 2025 35/53



( fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

how to efficiently square (and renormalize) a deep PC?

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 36/53



squaring deep PCs
the tensorized way

( fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2
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squaring deep PCs
the tensorized way

( fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙
⊙

squaring a circuit = squaring layers
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squaring deep PCs
the tensorized way

( fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙
⊙

exactly compute
∫
c(x)c(x)dX in time O(LK2)

37/53



how more expressive?
for the ML crowd
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theorem

∃ p requiring exponentially large

squared non-mono circuits… ( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 39/53



theorem

...

…but compact

monotonic circuits…!
( )

2
· · ·

· · ·

· · ·

· · · · · ·

· · ·

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 39/53



Σ(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

what if we use more that one square?
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theorem

( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large squared non-mono circuits…

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 41/53



theorem

· · ·

· · ·

· · ·

· · · · · ·

· · ·

( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…exponentially large monotonic circuits…

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 41/53



theorem

· · ·

· · ·

· · ·

· · · · · ·

· · ·

( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…but compact SOS circuits…!

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 41/53

...( )
2

Σ



a hierarchy of subtractive mixtures

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 42/53



complex circuits are SOS (and scale better!)

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAI, 2025 43/53



compositional inference I

1 from cirkit.symbolic.functional import integrate, multiply,
conjugate↪→

2

3 # create a deep circuit with complex parameters
4 c = build_symbolic_complex_circuit('quad-tree-4')
5

6 # compute the partition function of c^2
7 def renormalize(c):
8 c1 = conjugate(c)
9 c2 = multiply(c, c1)

10 return integrate(c2)
44/53
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approximate inference
e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

Ex∼q(x) [f(x)] ≈
1

S

∑S

i=1
f(x(i)) with x(i) ∼ q(x)

⇒ but how to sample from q?

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, TMLR, 2025 45/53



approximate inference
e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

Ex∼q(x) [f(x)] ≈
1

S

∑S

i=1
f(x(i)) with x(i) ∼ q(x)

⇒ but how to sample from q?
use autoregressive inverse transform sampling:

x1 ∼ q(x1), xi ∼ q(xi|x<i) for i ∈ {2, ..., d}

⇒ can be slow for large dimensions, requires inverting the CDF

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, TMLR, 2025 45/53



approximate inference
difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

q(x) = Z+ · q+(x)− Z− · q−(x)

⇒ expectations will break down in two “parts”

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025 46/53



approximate inference
difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

q(x) = Z+ · q+(x)− Z− · q−(x)

⇒ expectations will break down in two “parts”

Z+

S+

∑S+

s=1
f(x

(s)
+ )− Z−

S−

∑S−

s=1
f(x

(s)
− ), where

x
(s)
+ ∼ q+(x+)

x
(s)
− ∼ q−(x−)

, (1)

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025 46/53



approximate inference
difference of expectation estimator

faster than autoregressive sampling

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025 47/53



oh mixtures, you’re so fine you blow my mind!

image taken from Hao Tang’s course on ASR 48/53



p(X)

K∑
i=1

wipi(X) wi > 0

49/53
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p(X)

K∑
i=1

wipi(X) wi > 0

“if someone publishes a paper onmodel A, there will be a paper about
mixtures of A soon, with high probability” A. Vergari
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p(X)

K∑
i=1

wipi(X) wi > 0

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

2D∑
i=1

wipi(X) = PC(X)
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p(X)

K∑
i=1

wipi(X) wi > 0

fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙

2D∑
i=1

wipi(X) = PC(X)

(
K∑
i=1

wipi(X)

)2

wi ∈ R fi(X3)fj(X3)

gi(X2)gj(X2) hi(X1)hj(X1)

W
2 ⊗

W
2

W1⊗W1

⊙
⊙
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cirkitkit
learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit
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(fi(X3)

gi(X2) hi(X1)

W1

W2

⊙
⊙ )2

questions?
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