

representation, learning & inference

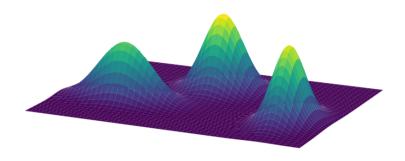
antonio vergari (he/him)

april-tools.github.io

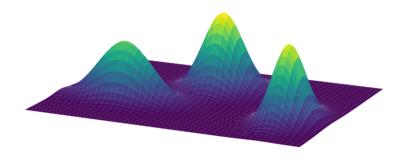
about probabilities integrals & logic

autonomous & provably reliable intelligent learners

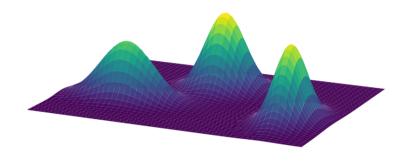
april is probably a recursive identifier of a lab



who knows mixture models?



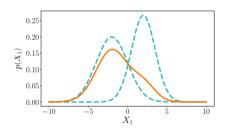
who loves mixture models?



$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad w_i \ge 0, \quad \sum_{i=1}^{K} w_i = 1$$

GMMs

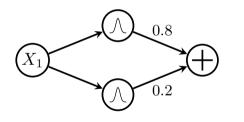
as computational graphs



$$p(X) = w_1 \cdot p_1(X_1) + w_2 \cdot p_2(X_1)$$

translating inference to data structures...

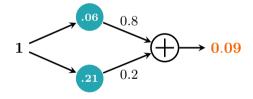
as computational graphs



$$p(X_1) = 0.2 \cdot p_1(X_1) + 0.8 \cdot p_2(X_1)$$

⇒ ...e.g., as a weighted sum unit over Gaussian input distributions

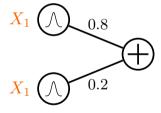
as computational graphs



$$p(X = 1) = 0.2 \cdot p_1(X_1 = 1) + 0.8 \cdot p_2(X_1 = 1)$$

⇒ inference = feedforward evaluation

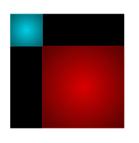
as computational graphs



A simplified notation:

GMMs

as computational graphs

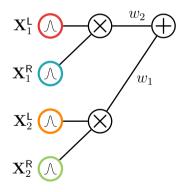


$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot p_1(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot p_2(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

⇒ local factorizations...

GMMs

as computational graphs



$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot \mathbf{p_1}(\mathbf{X}_1^{\mathsf{R}}) + \\ w_2 \cdot \mathbf{p_2}(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

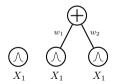
⇒ ...are product units

a grammar for tractable computational graphs

1. A simple tractable function is a circuit

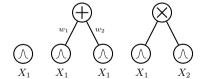
a grammar for tractable computational graphs

- 1. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit

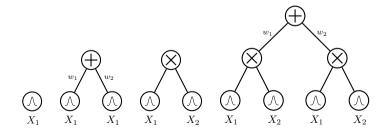


a grammar for tractable computational graphs

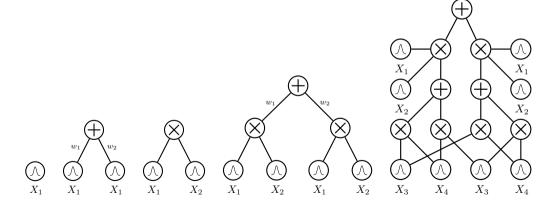
I. A simple tractable function is a circuitII. A weighted combination of circuits is a circuitIII. A product of circuits is a circuit



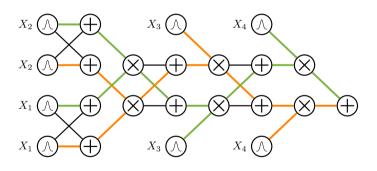
a grammar for tractable computational graphs



a grammar for tractable computational graphs

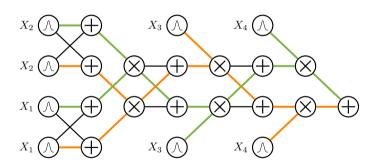


deep mixtures



$$p(\mathbf{x}) = \sum_{\mathcal{T}} \left(\prod_{w_j \in \mathbf{w}_{\mathcal{T}}} w_j \right) \prod_{l \in \mathsf{leaves}(\mathcal{T})} p_l(\mathbf{x})$$

deep mixtures



an exponential number of mixture components!

circuits (and variants) everywhere

Semantic Probabilistic Lavers for Neuro-Symbolic Learning

Kareem Ahmed

CS Department UCLA.

ahmedk@cs_ucla_edu

Stefano Teso

CIMeC and DISI University of Trento stefano teso@unitn it Kai-Wei Chang

CS Department LICL A

kwchang@cs.ucla.edu

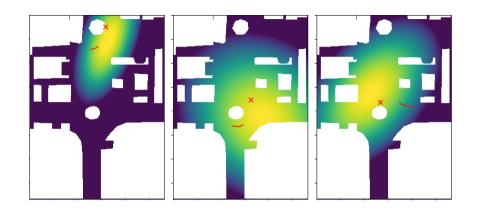
Guv Van den Broeck CS Department

LICLA guvvdb@cs.ucla.edu

Antonio Vergari

School of Informatics University of Edinburgh avergari@ed.ac.uk

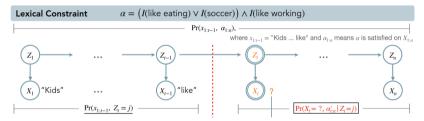
enforce constraints in neural networks at NeurIPS 2022



extending it to SMT constraints

Tractable Control for Autoregressive Language Generation

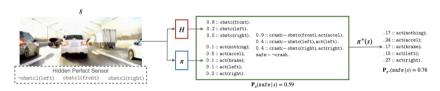
Honghua Zhang *1 Meihua Dang *1 Nanyun Peng 1 Guy Van den Broeck 1



constrained text generation with LLMs (ICML 2023)

Safe Reinforcement Learning via Probabilistic Logic Shields

Wen-Chi Yang¹, Giuseppe Marra¹, Gavin Rens and Luc De Raedt^{1,2}



reliable reinforcement learning (AAAI 23)

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte

University of Edinburgh, UK 1.loconte@sms.ed.ac.uk

Robert Peharz

TU Graz, Austria robert.peharz@tugraz.at

Nicola Di Mauro

University of Bari, Italy nicola.dimauro@uniba.it

Antonio Vergari

University of Edinburgh, UK avergari@ed.ac.uk

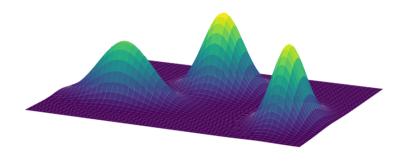
enforce constraints in knowledge graph embeddings oral at NeurIPS 2023

Logically Consistent Language Models via Neuro-Symbolic Integration

improving logical (self-)consistency in LLMs at ICLR 2025

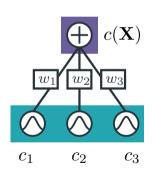
learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit



$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad \frac{\mathbf{w_i} \ge \mathbf{0}}{\sum_{i=1}^{K} w_i} = 1$$

are so cool!

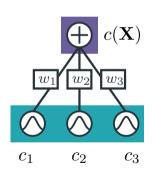


easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

are so cool!

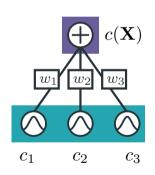


easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

are so cool!

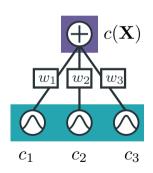


easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

are so cool!

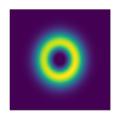


easily represented as shallow PCs

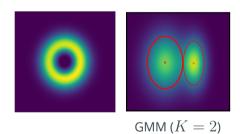
these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

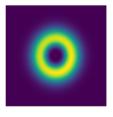
however...

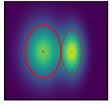


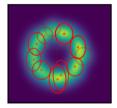
however...



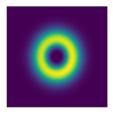
however...

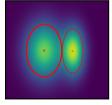


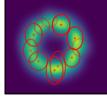


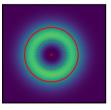


however...







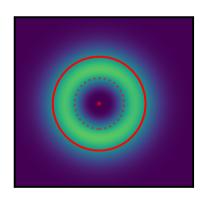


 $\operatorname{GMM}\left(K=2\right) \quad \operatorname{GMM}\left(K=16\right) \quad \operatorname{nGMM}^{2}\left(K=2\right)$

spoiler

shallow mixtures with negative parameters can be *exponentially more compact* than deep ones with positive parameters.

subtractive MMs



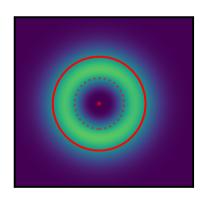
also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mear

subtractive MMs



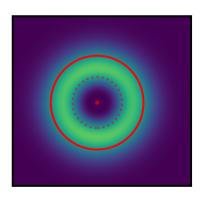
also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mean

subtractive MMs



also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

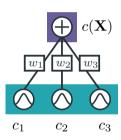
⇒ constraints on variance, mean

tl;dr

"Understand when and how we can use negative parameters in deep subtractive mixture models"

"Understand when and how we can use negative parameters in deep non-monotonic squared circuits"

subtractive MMs as circuits

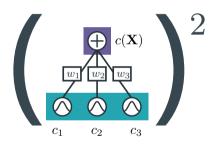


a **non-monotonic** smooth and (structured) decomposable circuit

possibly with negative outputs

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \qquad \mathbf{w_i} \in \mathbb{R},$$

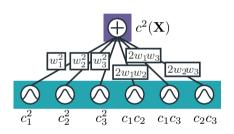
squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$

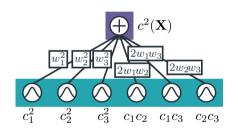
ensure non-negative output

squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

squaring shallow MMs

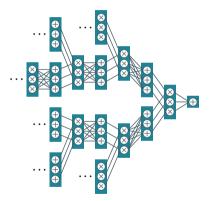


$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

still a smooth and (str) decomposable PC with $\mathcal{O}(K^2)$ components! \Longrightarrow but still $\mathcal{O}(K)$ parameters

"do negative parameters really boost expressiveness? and...always?"

theorem

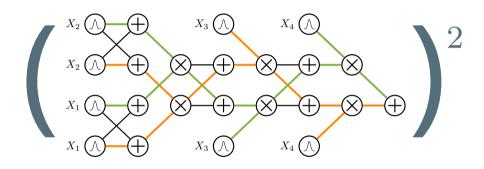


 $\exists p$ requiring exponentially large monotonic circuits...

theorem



...but compact squared non-monotonic circuits



how to efficiently square (and *renormalize*) a deep PC?

compositional inference

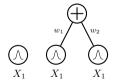

```
from cirkit.symbolic.functional import integrate, multiply
# create a deep circuit
c = build symbolic circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
    c2 = multiply(c, c)
    return integrate(c2)
```

the unit-wise definition

I. A simple tractable function is a circuit

the unit-wise definition

- I. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit

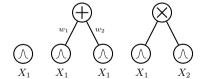


the unit-wise definition

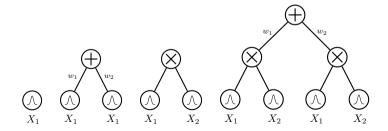
I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

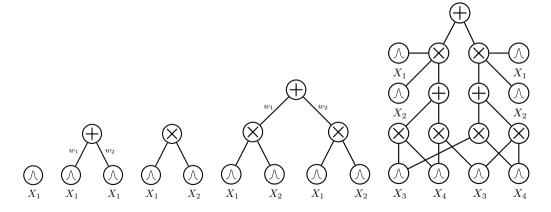
III. A product of circuits is a circuit



the unit-wise definition



the unit-wise definition



a tensorized definition

I. A set of tractable functions is a circuit layer

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layerIII. The product of two layers is a circuit layer

$$c(\mathbf{x}) = oldsymbol{l}(\mathbf{x}) \odot oldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

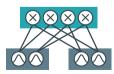
$$c(\mathbf{x}) = oldsymbol{l}(\mathbf{x}) \odot oldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(\boldsymbol{l}(\mathbf{x})\boldsymbol{r}(\mathbf{x})^{\top})$$
 // Kronecker



a tensorized definition

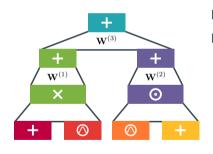
I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(\boldsymbol{l}(\mathbf{x})\boldsymbol{r}(\mathbf{x})^{\top})$$
 // Kronecker

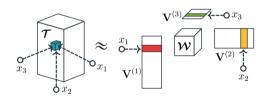
a tensorized definition

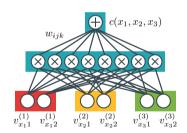


I. A set of tractable functions is a circuit layer
II. A linear projection of a layer is a circuit layer
III. The product of two layers is a circuit layer
stack layers to build a deep circuit!

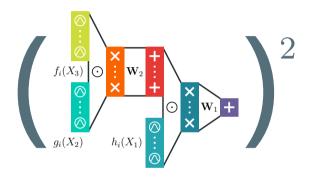
circuits layers

as tensor factorizations





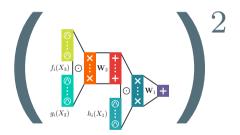
Loconte et al., "What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?", TMLR, 2025



how to efficiently square (and *renormalize*) a deep PC?

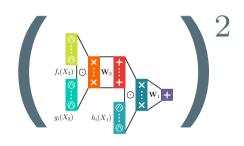
squaring deep PCs

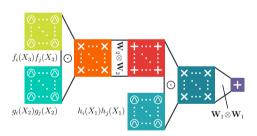
the tensorized way



squaring deep PCs

the tensorized way

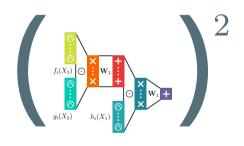


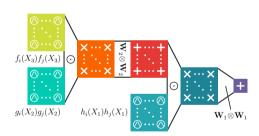


squaring a circuit = squaring layers

squaring deep PCs

the tensorized way

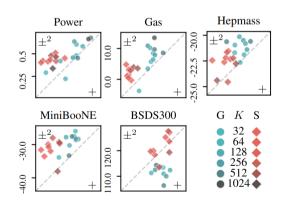


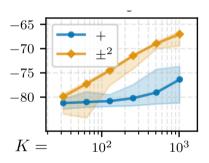


exactly compute $\int c(\mathbf{x}) c(\mathbf{x}) d\mathbf{X}$ in time $O(LK^2)$

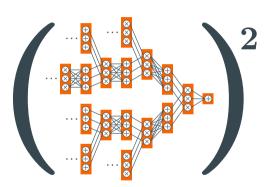
how more expressive?

for the ML crowd



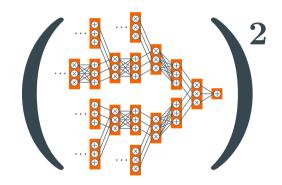


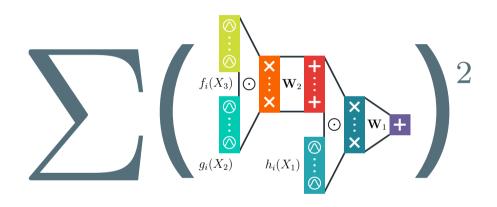
 $\exists p$ requiring exponentially large squared non-mono circuits...



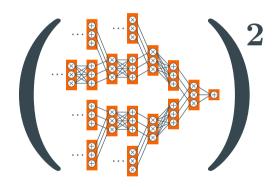
...but compact

monotonic circuits...!

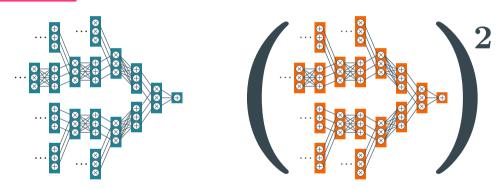




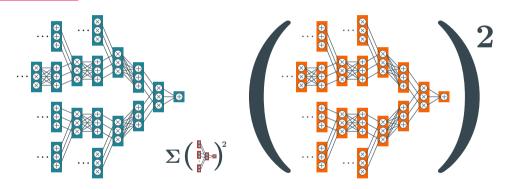
what if we use more that one square?



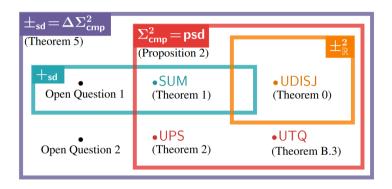
 $\exists p$ requiring exponentially large squared non-mono circuits...



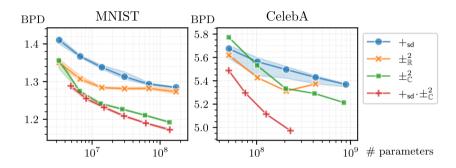
...exponentially large monotonic circuits...



...but compact SOS circuits...!



a hierarchy of subtractive mixtures



complex circuits are SOS (and scale better!)

compositional inference


```
from cirkit.symbolic.functional import integrate, multiply,

→ conjugate

# create a deep circuit with complex parameters
c = build symbolic complex circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
   c1 = conjugate(c)
   c2 = multiply(c, c1)
   return integrate(c2)
```

e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[f(\mathbf{x}) \right] \approx \frac{1}{S} \sum_{i=1}^{S} f(\mathbf{x}^{(i)}) \qquad \text{with} \qquad \mathbf{x}^{(i)} \sim q(\mathbf{x})$$

$$\implies \textit{but how to sample from } q?$$

e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[f(\mathbf{x}) \right] \approx \frac{1}{S} \sum\nolimits_{i=1}^{S} f(\mathbf{x}^{(i)}) \qquad \text{with} \qquad \mathbf{x}^{(i)} \sim q(\mathbf{x}) \\ \Longrightarrow \quad \textit{but how to sample from } q?$$

use *autoregressive inverse transform sampling*:

$$x_1 \sim q(x_1), \quad x_i \sim q(x_i|\mathbf{x}_{< i}) \quad \text{for } i \in \{2, ..., d\}$$

⇒ can be slow for large dimensions, requires inverting the CDF

difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

$$q(\mathbf{x}) = Z_+ \cdot q_+(\mathbf{x}) - Z_- \cdot q_-(\mathbf{x})$$
 \implies expectations will break down in two "parts"

difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

$$q(\mathbf{x}) = Z_+ \cdot q_+(\mathbf{x}) - Z_- \cdot q_-(\mathbf{x})$$
 \implies expectations will break down in two "parts"

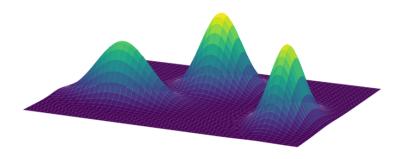
$$\frac{Z_{+}}{S_{+}} \sum_{s=1}^{S_{+}} f(\mathbf{x}_{+}^{(s)}) - \frac{Z_{-}}{S_{-}} \sum_{s=1}^{S_{-}} f(\mathbf{x}_{-}^{(s)}), \text{ where } \frac{\mathbf{x}_{+}^{(s)} \sim q_{+}(\mathbf{x}_{+})}{\mathbf{x}_{-}^{(s)} \sim q_{-}(\mathbf{x}_{-})},$$
(1)

difference of expectation estimator

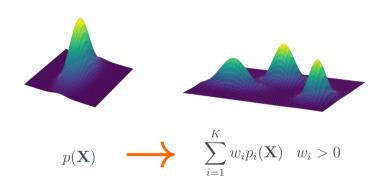
		Number of components (K)					
		2		4		6	
Method	d	$\log(\widehat{I} - I)$	Time (s)	$\log(\widehat{I} - I)$	Time (s)	$\log(\widehat{I} - I)$	Time (s)
ΔExS ARITS	16 16	-19.507 ± 1.025 -19.111 ± 1.103	$\begin{array}{c} 0.293 \pm 0.004 \\ 7.525 \pm 0.038 \end{array}$	-19.062 ± 0.823 -19.299 ± 1.611	$\begin{array}{c} 1.049 \pm 0.077 \\ 7.52 \pm 0.023 \end{array}$	-19.497 ± 1.974 -18.739 ± 1.024	$\begin{array}{c} 2.302 \pm 0.159 \\ 7.746 \pm 0.032 \end{array}$
ΔExS ARITS	32 32	$\begin{array}{c} \text{-}48.411 \pm 1.265 \\ \text{-}47.897 \pm 1.165 \end{array}$	$\begin{array}{c} 0.325 \pm 0.012 \\ 15.196 \pm 0.059 \end{array}$	-48.046 ± 0.972 -47.349 ± 0.839	$\begin{array}{c} 1.027 \pm 0.107 \\ 15.535 \pm 0.059 \end{array}$	-48.34 ± 0.814 -47.3 ± 0.978	$\begin{array}{c} 2.213 \pm 0.177 \\ 17.371 \pm 0.06 \end{array}$
ΔExS ARITS	64 64	-108.095 ± 1.094 -107.898 ± 1.129	$\begin{array}{c} 0.38 \pm 0.034 \\ 30.459 \pm 0.098 \end{array}$	-107.56 ± 0.616 -107.33 ± 0.929	$\begin{array}{c} 0.9 \pm 0.14 \\ 33.892 \pm 0.119 \end{array}$	-107.653 ± 0.945 -107.374 ± 1.138	$\begin{array}{c} 1.512 \pm 0.383 \\ 52.02 \pm 0.127 \end{array}$

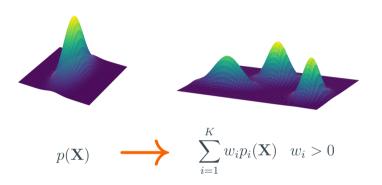
faster than autoregressive sampling

Zellinger et al., "Scalable Expectation Estimation with Subtractive Mixture Models", Under submission, 2025



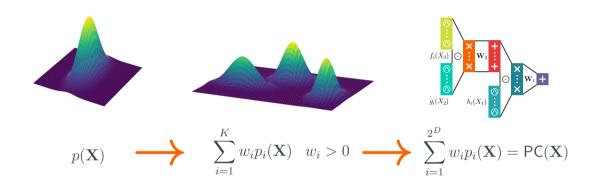
oh mixtures, you're so fine you blow my mind!

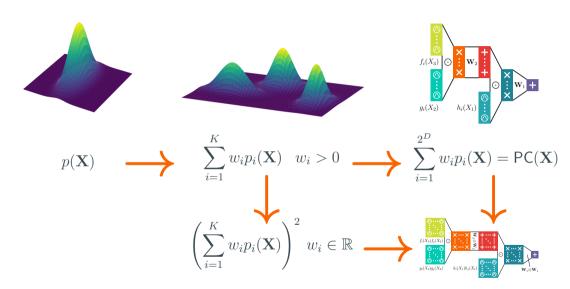




"if someone publishes a paper on **model A**, there will be a paper about **mixtures of A** soon, with high probability"

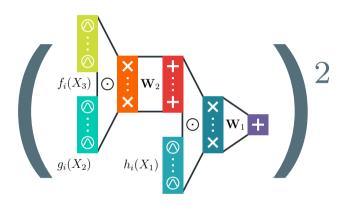
A. Vergari





learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit



questions?