
logically-consistent deep learning
via probabilistic circuits

antonio vergari (he/him)
@tetraduzione

17th Oct 2024 - PICS PhD School - Copenhagen



probabilistic circuits (PCs)
A grammar for tractable computational graphs

X1

2/80

I. A simple tractable function is a circuit
⇒ e.g., a multivariate Gaussian, or a logical

literal
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I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit
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structural properties

smoothness

decomposability

compatibility

determinism

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurIPS, 2021 3/80
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determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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determinism + decomposability = tractable ELBO
Using deterministic and decomposable PCs as expressive variational familyQ for
discrete polynomial log-densities, i.e. argmaxq∈Q Ex∼q [logw(x)] +H(q)

Closed-form computation for the entropyH [Vergari et al. 2021]

Shih and Ermon, “Probabilistic Circuits for Variational Inference in Discrete Graphical Models”,
NeurIPS, 2020 8/80



x1

x2

x3

x4

x5

x6

x7

x8

X1 X2 X3 X4 X5

≈
pm(X)

...

q1(m)?

q2(m)?

qk(m)?

generative models that can reason probabilistically
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…but some events are certain!



math reasoning
and logical deduction

Constraints: carrying out arithmetic tasks, but also proving theorems
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physics laws

Constraints: preserving #atoms, #electrons (RedOx), …in chemical reactions
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AI safety

Constraints: traffic rules, scene understanding (objects do not disappear) …

Marconato et al., “Not all neuro-symbolic concepts are created equal: Analysis and mitigation of
reasoning shortcuts”, NeurIPS, 2023 13/80



“but how bad
are purely neural models
when dealing with
hard constraints
in the real world?”
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code understanding

Maveli, Vergari, and Cohen, “What can Large Language Models Capture about Code Functional
Equivalence?”, arXiv, 2024 15/80



what about valid molecules?

Hoogeboom et al., “Equivariant diffusion for molecule generation in 3d”,
International Conference on Machine Learning, 2022 16/80



and valid reactions?

“deep learning is doing alchemy”
17/80



and valid reactions?
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planning

Spoiler: “To summarize, nothing that I have read, verified, or done gives me any compelling
reason to believe that LLMs do reasoning/planning, as normally understood..”

Kambhampati, “Can large language models reason and plan?”, , 2024 18/80



logical inconsistency

Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

A: (albatross, IsA, bird)
B: (albatross, IsA, fish)

Is an albatross a bird?

Forward Implication
A → ¬B

Yes.

Is an albatross a fish?

No.

B: (albatross, IsNotA, organism)
A: (albatross, IsNotA, living thing)

Is it true that an albatross is 
not an organism?

Reverse Implication
¬B → ¬A

No.

Is it true that an albatross is 
not a living thing?

Yes.

A: (computer, IsA, airplane)
Ã: (computer, IsNotA, airplane)

Is a computer a airplane?

Negation
A ⊕ Ã

No.

Is it true that a computer is not 
a airplane?

No.Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

= 
LL

aM
a 

2
= 

Lo
C

o-
LL

aM
a 

2

LLMs confabulate and contradict themselves 1

1https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency 19/80

https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency
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Goal

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”
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the issues!

I) Logical constraints can be hard to represent in a unified way
⇒ a single framework for implications, negation, paths, hierarchies, …

II) How to integrate logic and probabilities in a single architecture
⇒ combining soft and hard constraints

III) Logical constraints are piecewise constant functions!
⇒ differentiable almost everywhere but gradient is zero! 22/80
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hard vs soft constraints
logic vs probabilities

logic

“If X is a bird, X flies”

A(X) =⇒ B(X)

prob logic

“If X is a bird, X might fly”

p(A(X) =⇒ B(X))

23/80



which logic?
or which kind of constraints to represent?

propositional logic (zeroth-order)

(a ∧ b) ∨ d =⇒ c

first-order logic (FOL)

∀a∃b : R(a, b) ∨Q(d) =⇒ C(x)

satisfiability modulo theory (SMT)

(αXi − βXj ≤ 100) ∨ (Xj +Xk ≥ 0) =⇒ (XjXk ≤ Xi)
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which logical consistency?
factuality

we know that some facts f in a KB are true.

f1 : “an albatross is a bird”

how to query an LLM?

pθ(zf = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is an albatross a bird?”)

25/80



which logical consistency?
negation

Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

A: (albatross, IsA, bird)
B: (albatross, IsA, fish)

Is an albatross a bird?

Forward Implication
A → ¬B

Yes.

Is an albatross a fish?

No.

B: (albatross, IsNotA, organism)
A: (albatross, IsNotA, living thing)

Is it true that an albatross is 
not an organism?

Reverse Implication
¬B → ¬A

No.

Is it true that an albatross is 
not a living thing?

Yes.

A: (computer, IsA, airplane)
Ã: (computer, IsNotA, airplane)

Is a computer a airplane?

Negation
A ⊕ Ã

No.

Is it true that a computer is not 
a airplane?

No.Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

= 
LL

aM
a 

2
= 

Lo
C

o-
LL

aM
a 

2

if we know the following fact
f : “an albatross is a bird”

and what to query the truth value zf̃ of

f̃ : “an albatross is not a bird”

because f is the negation of f̃ :

zf ⊕ zf̃ ⇐⇒ (zf ∧ ¬zf̃ ) ∨ (¬zf ∧ zf̃ )

we expect the answer to be that f̃ is false.
26/80



which logical consistency?
implication

Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

A: (albatross, IsA, bird)
B: (albatross, IsA, fish)

Is an albatross a bird?

Forward Implication
A → ¬B

Yes.

Is an albatross a fish?

No.

B: (albatross, IsNotA, organism)
A: (albatross, IsNotA, living thing)

Is it true that an albatross is 
not an organism?

Reverse Implication
¬B → ¬A

No.

Is it true that an albatross is 
not a living thing?

Yes.

A: (computer, IsA, airplane)
Ã: (computer, IsNotA, airplane)

Is a computer a airplane?

Negation
A ⊕ Ã

No.

Is it true that a computer is not 
a airplane?

No.Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 

Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

= 
LL

aM
a 

2
= 

Lo
C

o-
LL

aM
a 

2

if we know the following fact
f1 : “an albatross is a bird”

and what to query the truth value zf2 of
f2 : “an albatross is an animal”

because f1 implies f2:

(zf1 → zf2) ⇐⇒ (¬zf1 ∨ zf2)

we expect the answer to be that f2 is true.
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which logical consistency?
reverse implication

Yes.

No. Yes.

Factual: Logical: 

Factual: Logical: 
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Is it true that an albatross is 
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Reverse Implication
¬B → ¬A

No.

Is it true that an albatross is 
not a living thing?

Yes.

A: (computer, IsA, airplane)
Ã: (computer, IsNotA, airplane)

Is a computer a airplane?

Negation
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No.

Is it true that a computer is not 
a airplane?

No.Yes.
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Factual: Logical: Factual: Logical: 

Factual: Logical: Factual: Logical: 

= 
LL

aM
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2
= 
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C

o-
LL

aM
a 

2

we can reverse an implication

zf̃2 → zf̃1

where f̃2 : “an albatross is not an animal”

and we ask if the following is true
f̃1 : “an albatross is not a bird”

we expect the answer to be that f̃1 is true.
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how
to enforce constraints?

max pθ(Ki)

maximise the probability of the constraint to hold!

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 29/80



how
to enforce constraints?

minL(Ki, pθ) = min− log
∑

z|=Ki

∏
j:z|=zfj

pθ(zfj)
∏

j:z|=¬zfj
(1− pθ(zfj))

minimize the semantic loss

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 29/80



WMC
computing the probability of logical formulas

pθ(K(z)) = Ez∼p(z)[1{z |= K}]

computing the probability of K

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 30/80



WMC
computing the probability of logical formulas

Ez∼p(z)[1{z |= K}] =
∑
z

p(z)1{z |= K} =
∑
z|=K

p(z)

computing the weighted model count (WMC) of K

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 30/80



WMC
computing the probability of logical formulas

Ez∼p(z)[1{z |= K}] =
∑
z|=K

∏
i:z|=zi

p(zi)
∏

i:z|=¬zi

(1− p(zi))

assuming independence of z (but be careful!)
2

2van Krieken et al., “On the Independence Assumption in Neurosymbolic Learning”, 2024
Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 30/80



WMC
computing the probability of logical formulas

Ez∼p(z)[1{z |= K}] =
∑
z|=K

∏
i:z|=zi

p(zi)
∏

i:z|=¬zi

(1− p(zi))

computing WMC is #P-hard in general : (

Xu et al., “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”,
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 30/80



more complex constraints
EntailmentBank

(zf1 ∧ zf2 → zf3) ∧ zf4 → zf5

f1 : “melting is a kind of phase change”
f2 : “the ice melts”
f3 : “the ice undergoes a phase change”
f4 : “phase changes do not change mass”
f5 : “the mass of the ice will not change”

31/80



Goal

Can we encode K

to yield a tractable WMC?
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Goal

Can we encode K

to yield a tractable WMC?
yes, as a circuit!
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semantic loss

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

c

compiling logical formulas into circuits

34/80



knowledge compilation

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1) 1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0}

1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, AAAI, 2008 35/80
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knowledge compilation

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)
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tractable WMC

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

exactly compute WMC in time O(|c|)
Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurIPS, 2021 36/80



SL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint
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SL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

− logWMC(Ki, pθ)

3)minimize the semantic loss

4) train end-to-end by sgd!

37/80



greatly improving (self-)consistency
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evaluate on unseen constraints
EntailmentBank

(zf1 ∧ zf2 → zf3) ∧ zf4 → zf5

f1 : “melting is a kind of phase change”
f2 : “the ice melts”
f3 : “the ice undergoes a phase change”
f4 : “phase changes do not change mass”
f5 : “the mass of the ice will not change”

39/80



finetune on BeliefBank, test on EntailmentBank

40/80



nice…
…but!

assuming facts to be independent…
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nice…
…but!

assuming facts to be independent…

no guarantees to satisfy
constraints at test time…
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nice…
…but!

assuming facts to be independent…

no guarantees to satisfy
constraints at test time…
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WMC
on the independence assumption

K : ¬r ∨ ¬g

a neural net should not output that a traffic
light is both red and green

van Krieken et al., “On the Independence Assumption in Neurosymbolic Learning”, ICML, 2024 43/80
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WMC
on the independence assumption

K : ¬r ∨ ¬g

a neural net should not output that a traffic
light is both red and green

only some probability assignments should be
non-zero (lower triangle)

van Krieken et al., “On the Independence Assumption in Neurosymbolic Learning”, ICML, 2024 43/80



WMC
on the independence assumption

K : ¬r ∨ ¬g

a neural net should not output that a traffic
light is both red and green

but assuming p(r,g) = p(r)p(g) restricts
this even further (only blue lines)

van Krieken et al., “On the Independence Assumption in Neurosymbolic Learning”, ICML, 2024 43/80
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nice…
…but!

assuming facts to be independent…

no guarantees to satisfy
constraints at test time…

44/80



how to

make any neural network architecture…

45/80



how to

…guarantee all predictions to conform to constraints?

46/80



When?

Ground Truth

e.g. predict shortest path in a map

47/80



When?

given x // e.g. a tile map

Ground Truth

nesy structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, , 2020 48/80
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When?
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When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

nesy structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, , 2020 48/80



When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, , 2020 49/80



How?

“which neural network
architecture
to use?”

50/80



e.g.,

sigmoid linear layers
p(y | x) =

∏N
i=1 p(yi | x)

51/80



When?

Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!

52/80



Constraint losses

Ground Truth ResNet-18 Semantic Loss

…but cannot guarantee consistency at test time!

53/80



SPL

Ground Truth ResNet-18 Semantic Loss SPL (ours)

you can predict valid paths 100% of the time!

54/80



How?

take an unreliable neural network architecture…

55/80



How?

……and replace the last layer with
a semantic probabilistic layer

56/80



SPL

SPL
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SPL

SPL

p(y | x) = qΘ(y | g(z))

qΘ(y | g(z)) is an expressive distribution over labels
57/80



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

cK(x,y) encodes the constraint 1{x,y |= K}
57/80



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

a product of experts : (
57/80



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

57/80



Goal

Can we design q and c

to be expressive models
yet yielding a tractable product?
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Goal

Can we design q and c

to be deep computational graphs
yet yielding a tractable product?
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Goal

Can we design q and c

to be deep computational graphs
yet yielding a tractable product?

yes! as circuits!

59/80



Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurIPS, 2021 60/80



SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))
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SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

c

and a logical circuit c(y,x) encoding K
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Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurIPS, 2021 63/80



SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint
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SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!
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Experiments

SPL

how good are SPLs?
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Experiments

Architecture Exact Hamming Consistent

ResNet-18+FIL 55.0 97.7 56.9
ResNet-18+LSL 59.4 97.7 61.2
ResNet-18+SPL 78.2 96.3 100.0
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Experiments
Ground Truth FIL LSL SPL

cost: 39.31 cost:∞ cost:∞ cost: 45.09

cost: 57.31 cost:∞ cost:∞ cost: 58.09
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SPLs
(and more circuits)

everywhere
68/80



constrained text generation with LLMs (ICML 2023)
69/80



reliable reinforcement learning (AAAI 23)
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enforce constraints in knowledge graph embeddings
oral at NeurIPS 2023
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constraints in KGs

interacts

treatstreatstreats

regulates 7 interacts

ibuprofen loxoprofen

COX2

inflammation pain

P-prostacyclin

phosp-acid

•Drugs •Symptoms

•Proteins •Functions

K : only drugs and proteins interact

A : ⟨loxoprofen, interacts,phosp-acid⟩

8

A : ⟨loxoprofen, interacts,COX2⟩

4
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constraints in KGs

interacts

treatstreatstreats

regulates interacts 3

ibuprofen loxoprofen

COX2

inflammation pain

P-prostacyclin

phosp-acid

•Drugs •Symptoms

•Proteins •Functions

K : only drugs and proteins interact

A : ⟨loxoprofen, interacts,phosp-acid⟩

8

A : ⟨loxoprofen, interacts,COX2⟩

4
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guaranteed satisfaction of constraints

ϕpc(S, interacts, O)

1{(S, interacts, O) |= K}
K : only drugs and proteins interact

×

pK
(□□□ loxoprofen, interacts,phosp-acid

)
= 0

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”,
Advances in Neural Information Processing Systems 35 (NeurIPS), 2022 73/80



open problems

I constraints over continuous variables

II scaling to H U G E constraints

III learn (partial) constraints

IV revise constraints (continual learning)
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extending it to SMT constraints
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SPL & LTN & DPL CBMs NN + ex-post

NeSy models are concept bottlenecks
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SPL & LTN & DPL CBMs NN + ex-post

NeSy models can suffer from reasoning shortcuts!
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Task Example Data Knowledge K Example RS Impact

MNIST math

{
2 · + = 6

+ = 7
Equations must hold.


→ 2

→ 4

→ 3

+ = 5

NeSy models can suffer from reasoning shortcuts!

Bortolotti et al., “A Benchmark Suite for Systematically Evaluating Reasoning Shortcuts”,
NeurIPS Benchmark track, 2024 77/80



how to detect and mitigate them

Marconato et al., “Not all neuro-symbolic concepts are created equal: Analysis and mitigation of
reasoning shortcuts”, NeurIPS, 2023
Bortolotti et al., “A Benchmark Suite for Systematically Evaluating Reasoning Shortcuts”,
NeurIPS Benchmark track, 2024 78/80



workshop at AAAI-25, Philadelfia
april-tools.github.io/colorai/ 79/80

april-tools.github.io/colorai/


K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c
Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

questions?
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	lacamlilac…but some events are certain!

