

representation, learning & inference

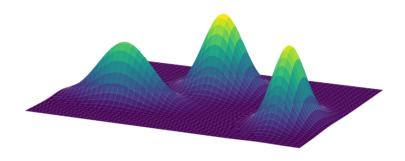
antonio vergari (he/him)

april-tools.github.io

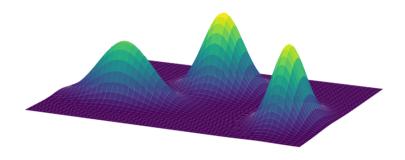
about probabilities integrals & logic

autonomous & provably reliable intelligent learners

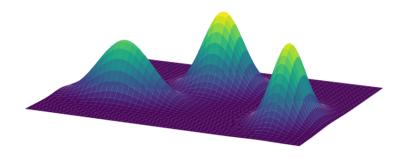
april is probably a recursive identifier of a lab



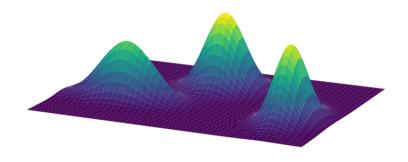
who knows mixture models?



who loves mixture models?



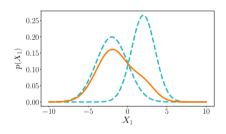
a brief recap...



$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad w_i \ge 0, \quad \sum_{i=1}^{K} w_i = 1$$

GMMs

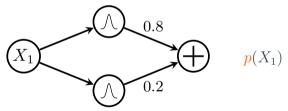
as computational graphs



$$p(X) = w_1 \cdot p_1(X_1) + w_2 \cdot p_2(X_1)$$

translating inference to data structures...

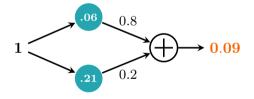
as computational graphs



$$p(X_1) = 0.2 \cdot p_1(X_1) + 0.8 \cdot p_2(X_1)$$

⇒ ...e.g., as a weighted sum unit over Gaussian input distributions

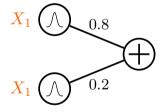
as computational graphs



$$p(X = 1) = 0.2 \cdot p_1(X_1 = 1) + 0.8 \cdot p_2(X_1 = 1)$$

inference = feedforward evaluation

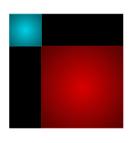
as computational graphs



A simplified notation:

GMMs

as computational graphs

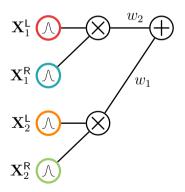


$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot p_1(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot p_2(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

→ local factorizations...

GMMs

as computational graphs



$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot p_1(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot p_2(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

⇒ ...are product units

a grammar for tractable computational graphs

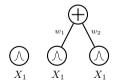
I. A simple tractable function is a circuit

e.g., a multivariate Gaussian or

orthonormal polynomial

a grammar for tractable computational graphs

- 1. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit



a grammar for tractable computational graphs

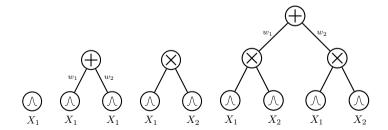
I. A simple tractable function is a circuitII. A weighted combination of circuits is a circuit

11.71 Weighted combination of chedits is a chedi

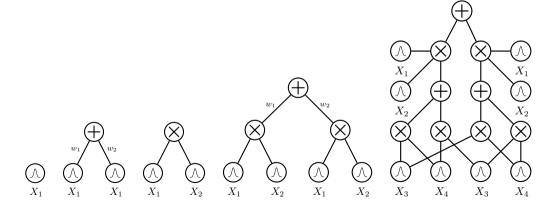
III. A product of circuits is a circuit



a grammar for tractable computational graphs



a grammar for tractable computational graphs



a tensorized definition

I. A set of tractable functions is a circuit layer

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layerIII. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \boldsymbol{l}(\mathbf{x}) \odot \boldsymbol{r}(\mathbf{x})$$
 // Hadamard



a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

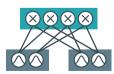
III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = oldsymbol{l}(\mathbf{x}) \odot oldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layerIII. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(\boldsymbol{l}(\mathbf{x})\boldsymbol{r}(\mathbf{x})^{\top})$$
 // Kronecker



a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(oldsymbol{l}(\mathbf{x})oldsymbol{r}(\mathbf{x})^{ op})$$
 // Kronecker

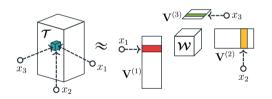
a tensorized definition

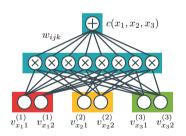


I. A set of tractable functions is a circuit layer
II. A linear projection of a layer is a circuit layer
III. The product of two layers is a circuit layer
stack layers to build a deep circuit!

tensor factorizations

as circuits





Loconte et al., "What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?", TMLR, 2025

learning & reasoning with circuits in pytorch

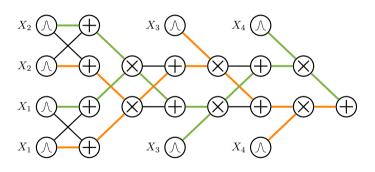
github.com/april-tools/cirkit

```
from cirkit.templates import circuit templates
   symbolic circuit = circuit templates.image data(
   (1, 28, 28),
                              # The shape of MNIST
      region graph='quad-graph',
      input layer='categorical', # input distributions
      sum product layer='cp', # CP, Tucker, CP-T
      num input units=64, # overparameterizing
      num sum units=64,
      sum weight param=circuit templates.Parameterization(
10
          activation='softmax'.
11
          initialization='normal'
12
13
```

```
from cirkit.pipeline import compile
  circuit = compile(symbolic circuit)
  with torch.no grad():
      test lls = 0.0
       for batch, in test dataloader:
           batch = batch.to(device).unsqueeze(dim=1)
           log likelihoods = circuit(batch)
           test lls += log likelihoods.sum().item()
9
       average ll = test lls / len(data test)
10
       bpd = -average 11 / (28 * 28 * np.log(2.0))
11
       print(f"Average LL: {average ll:.3f}") # Average LL:
12
       → -682,916
       print(f"Bits per dim: {bpd:.3f}") # Bits per dim: 1.257
13
```

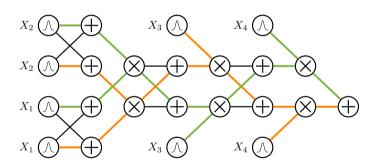


deep mixtures



$$p(\mathbf{x}) = \sum_{\mathcal{T}} \left(\prod_{w_j \in \mathbf{w}_{\mathcal{T}}} w_j \right) \prod_{l \in \mathsf{leaves}(\mathcal{T})} p_l(\mathbf{x})$$

deep mixtures



an exponential number of mixture components!

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == structural properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

smoothness

decomposability

compatibility

property A

property B

property C

smoothness

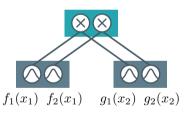
decomposability

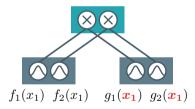
property C

smoothness ∧ decomposability

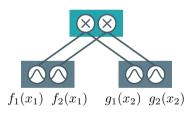
⇒ multilinearity

the inputs of product units are defined over disjoint sets of variables

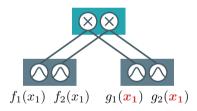




the inputs of product units are defined over disjoint sets of variables

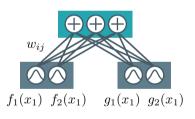


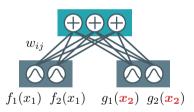
decomposable circuit



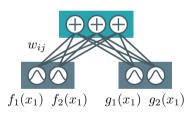
non-decomposable circuit

the inputs of sum units are defined over the same variables

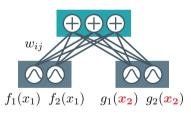




the inputs of sum units are defined over the same variables



smooth circuit



non-smooth circuit

smoothness

decomposability

property C

smoothness \wedge decomposability

 \Longrightarrow multilinearity

smoothness

decomposability

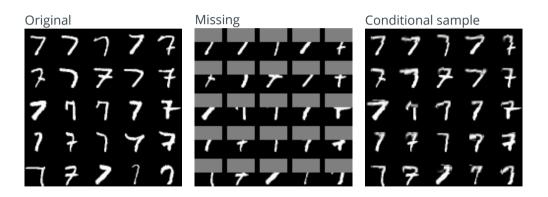
property C

tractable computation of **arbitrary integrals** in probabilistic circuits

$$p(\mathbf{y}) = \int p(\mathbf{y}, \mathbf{z}) \, d\mathbf{z}, \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

 \implies tractable partition function \implies also any conditional is tractable

tractable marginals on PCs



Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", , 2020

CelebA-HQ	ImageNet	LSUN-Bedrooms
Left Expand1 Expand2 V-str		Left Expand1 Expand2 V-strip
() () () ()		
	× ×	
	8 A P	

Liu, Niepert, and Broeck, "Image Inpainting via Tractable Steering of Diffusion Models", The Twelfth International Conference on Learning Representations (ICLR), 2024

smoothness

decomposability

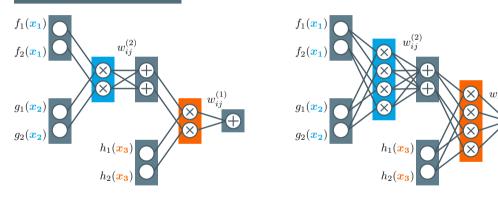
compatibility

Integrals involving two or more functions: e.g., expectations

$$\mathbb{E}_{\mathbf{x} \sim \frac{p}{p}} \left| f(\mathbf{x}) \right| = \int \frac{p(\mathbf{x})}{|p(\mathbf{x})|} |f(\mathbf{x})| d\mathbf{x}$$

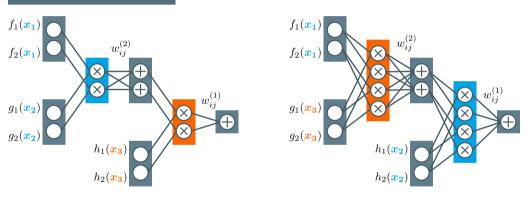
when both $p(\mathbf{x})$ and $f(\mathbf{x})$ are circuits

compatibility



compatibile circuits

compatibility



non-compatibile circuits

smoothness

decomposability

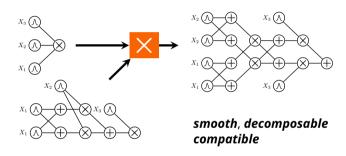
compatibility

compatibility

smoothness ∧ decomposability

compatiblity ⇒ tractable expectations

Tractable products



compute
$$\mathbb{E}_{\mathbf{x} \sim \frac{p}{p}}[f(\mathbf{x})] = \int \frac{p(\mathbf{x})}{p(\mathbf{x})} |f(\mathbf{x})| \, \mathrm{d}\mathbf{x}$$
 in $O(|\frac{p}{p}||f|)$

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

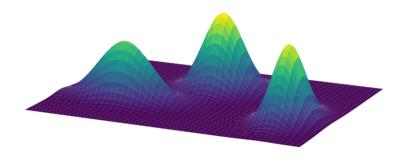
```
from cirkit.symbolic.circuit import Circuit
from cirkit.symbolic.functional import (
                                                 cir
   integrate, multiply)
# Circuits expectation \int [p(x) f(x)]dx
def expectation(p: Circuit, f: Circuit) -> Circuit:
   i = multiplv(p, f)
  return integrate(i)
# Squared loss \int [p(x)-q(x)]^2dx = E[p] + E[q] - 2E[p]
           def squared loss(p: Circuit, q: Circuit) -> Circuit:
   p2 = multiply(p, p)
   q2 = multiply(q, q)
 pq = multiply(p, q)
   return integrate(p2) + integrate(q2) - 2 * integrate(pq)
                                                         30/79
```

13

14

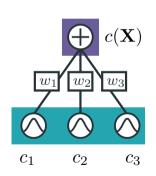
15

16



$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad \frac{\mathbf{w_i} \ge \mathbf{0}}{\sum_{i=1}^{K} w_i} = 1$$

are so cool!

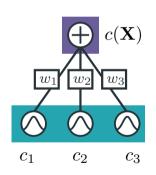


easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

are so cool!

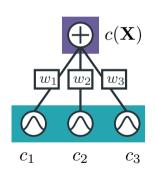


easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

are so cool!

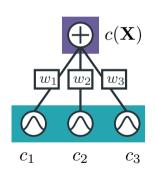


easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

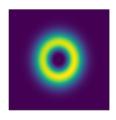
are so cool!

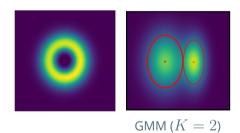


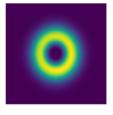
easily represented as shallow PCs

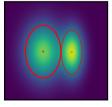
these are **monotonic** PCs

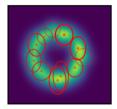
if marginals/conditionals are tractable for the components, they are tractable for the $\ensuremath{\mathsf{MM}}$

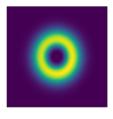


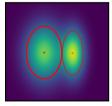


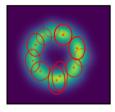


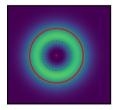








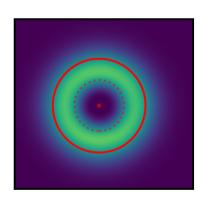




spoiler

shallow mixtures with negative parameters can be *exponentially more compact* than deep ones with positive parameters.

subtractive MMs



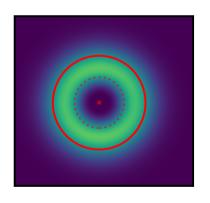
also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mear

subtractive MMs



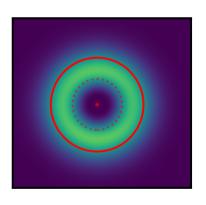
also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mear

subtractive MMs



also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

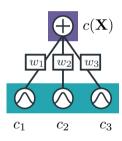
well understood for simple parametric forms e.g., Weibulls, Gaussians

⇒ constraints on variance, mean

"Understand when and how we can use negative parameters in deep subtractive mixture models"

"Understand when and how we can use negative parameters in deep non-monotonic circuits"

subtractive MMs as circuits

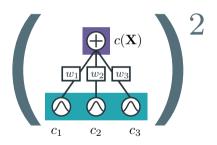


a **non-monotonic** smooth and (structured) decomposable circuit

possibly with negative outputs

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \qquad \mathbf{w_i} \in \mathbb{R},$$

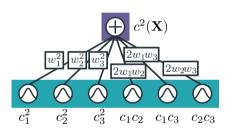
squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$

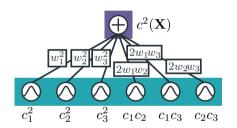
⇒ ensure non-negative output

squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

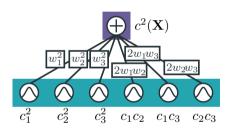
squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

still a smooth and (str) decomposable PC with $\mathcal{O}(K^2)$ components! \Longrightarrow but still $\mathcal{O}(K)$ parameters

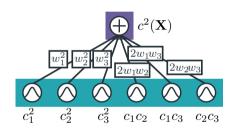
squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

to **renormalize**, we have to compute $\sum_i \sum_j w_i w_j \int c_i(\mathbf{x}) c_j(\mathbf{x}) d\mathbf{x}$

squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

to **renormalize**, we have to compute
$$\sum_i \sum_j w_i w_j \int c_i(\mathbf{x}) c_j(\mathbf{x}) d\mathbf{x}$$
 or we pick c_i, c_j to be **orthonormal**...!

EigenVI: score-based variational inference with orthogonal function expansions

Diana Cai Flatiron Institute dcai@flatironinstitute.org

Charles C. Margossian
Flatiron Institute
cmargossian@flatironinstitute.org

David M. Blei Columbia University david.blei@columbia.edu Chirag Modi Flatiron Institute cmodi@flatironinstitute.org

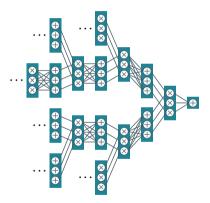
Robert M. Gower Flatiron Institute rgower@flatironinstitute.org

Lawrence K. Saul Flatiron Institute lsaul@flatironinstitute.org

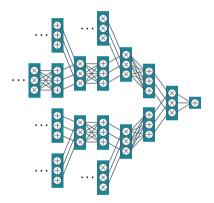
orthonormal squared mixtures for VI

wait...

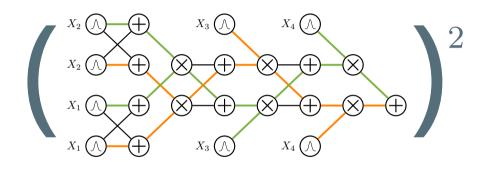
"do negative parameters really boost expressiveness? and...always?"



 $\exists p$ requiring exponentially large monotonic circuits...



...but compact squared non-monotonic circuits

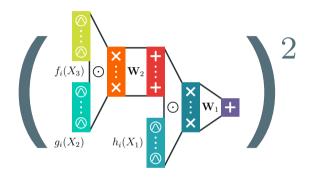


how to efficiently square (and *renormalize*) a deep PC?

Loconte et al., "Subtractive Mixture Models via Squaring: Representation and Learning", ICLR, 2024

compositional inference

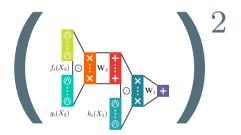

```
from cirkit.symbolic.functional import integrate, multiply
# create a deep circuit
c = build symbolic circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
    c2 = multiply(c, c)
    return integrate(c2)
```



how to efficiently square (and *renormalize*) a deep PC?

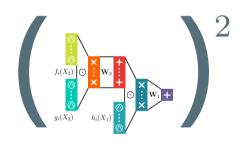
squaring deep PCs

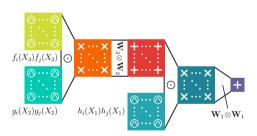
the tensorized way



squaring deep PCs

the tensorized way

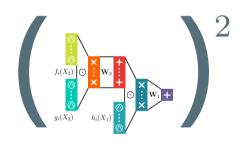


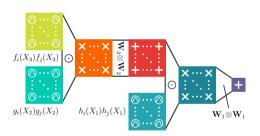


squaring a circuit = squaring layers

squaring deep PCs

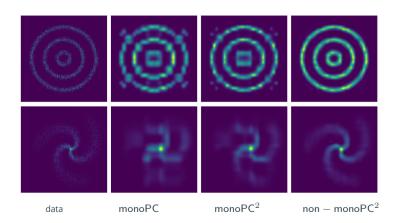
the tensorized way



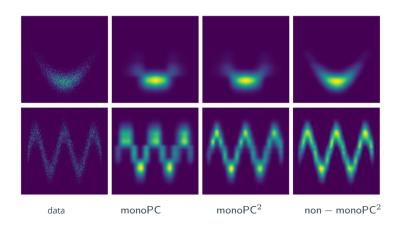


exactly compute $\int c(\mathbf{x}) c(\mathbf{x}) d\mathbf{X}$ in time $O(LK^2)$

more expressive?

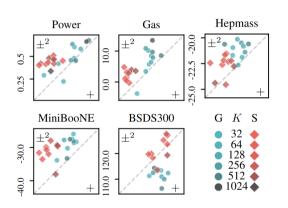


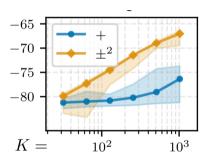
more expressive?



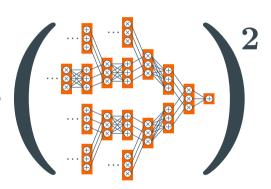
how more expressive?

real-world data

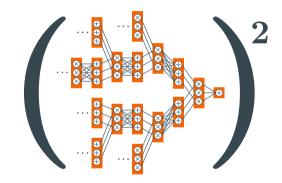


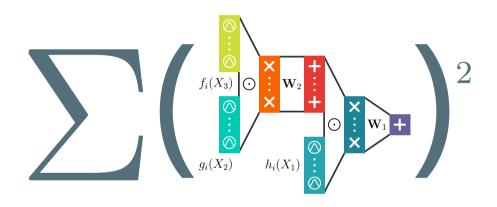


 $\exists p$ requiring exponentially large squared non-mono circuits...

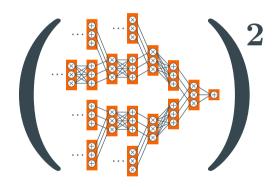


...but compact monotonic circuits...!



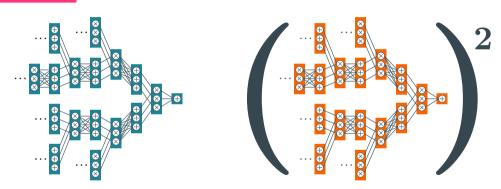


what if we use more that one square?



 $\exists p$ requiring exponentially large squared non-mono circuits...

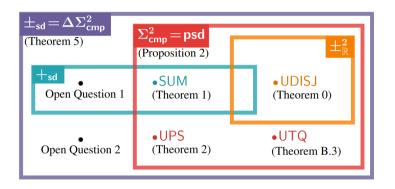
53/79



...exponentially large monotonic circuits...



...but compact SOS circuits...!



a hierarchy of subtractive mixtures

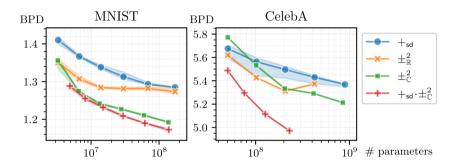
we can define circuits (and hence mixtures) over the Complex:

$$c^2(\mathbf{x}) = c(\mathbf{x})^{\dagger} c(\mathbf{x}), \quad c(\mathbf{x}) \in \mathbb{C}$$

and then we can note that they can be written as a SOS form

$$c^2(\mathbf{x}) = r(\mathbf{x})^2 + i(\mathbf{x})^2, \quad r(\mathbf{x}), i(\mathbf{x}) \in \mathbb{R}$$

complex circuits are SOS (and scale better!)



complex circuits are SOS (and scale better!)

takeaway

"use squared mixtures over complex numbers and you get a SOS for free"

takeaway

"use squared mixtures over complex numbers and you get a SOS for free"

 \Rightarrow but how to implement them?

compositional inference


```
from cirkit.symbolic.functional import integrate, multiply,

→ conjugate

# create a deep circuit with complex parameters
c = build symbolic complex circuit('quad-tree-4')
# compute the partition function of c 2
def renormalize(c):
   c1 = conjugate(c)
   c2 = multiply(c, c1)
   return integrate(c2)
```

On Faster Marginalization with Squared Circuits via Orthonormalization

Lorenzo Loconte¹

Antonio Vergari¹

School of Informatics, University of Edinburgh, UK 1.loconte@sms.ed.ac.uk, avergari@ed.ac.uk

what about deep orthonormal mixtures and arbitrary marginals?

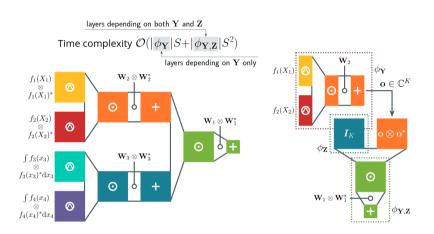
On Faster Marginalization with Squared Circuits via Orthonormalization

Lorenzo Loconte¹

Antonio Vergari¹

School of Informatics, University of Edinburgh, UK l.loconte@sms.ed.ac.uk, avergari@ed.ac.uk

it sufficies to orthonormalize each layer!



faster marginalization of arbitrary subsets of features

e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[f(\mathbf{x}) \right] \approx \frac{1}{S} \sum_{i=1}^{S} f(\mathbf{x}^{(i)}) \qquad \text{with} \qquad \mathbf{x}^{(i)} \sim q(\mathbf{x})$$

$$\implies \textit{but how to sample from } q?$$

e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[f(\mathbf{x}) \right] \approx \frac{1}{S} \sum\nolimits_{i=1}^{S} f(\mathbf{x}^{(i)}) \qquad \text{with} \qquad \mathbf{x}^{(i)} \sim q(\mathbf{x}) \\ \Longrightarrow \quad \textit{but how to sample from } q?$$

use autoregressive inverse transform sampling:

$$x_1 \sim q(x_1), \quad x_i \sim q(x_i|\mathbf{x}_{< i}) \quad \text{for } i \in \{2, ..., d\}$$

⇒ can be slow for large dimensions, requires inverting the CDF

difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

$$q(\mathbf{x}) = Z_+ \cdot q_+(\mathbf{x}) - Z_- \cdot q_-(\mathbf{x})$$
 \implies expectations will break down in two "parts"

difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

$$q(\mathbf{x}) = Z_+ \cdot q_+(\mathbf{x}) - Z_- \cdot q_-(\mathbf{x})$$
 \implies expectations will break down in two "parts"

$$\frac{Z_{+}}{S_{+}} \sum_{s=1}^{S_{+}} f(\mathbf{x}_{+}^{(s)}) - \frac{Z_{-}}{S_{-}} \sum_{s=1}^{S_{-}} f(\mathbf{x}_{-}^{(s)}), \text{ where } \frac{\mathbf{x}_{+}^{(s)} \sim q_{+}(\mathbf{x}_{+})}{\mathbf{x}_{-}^{(s)} \sim q_{-}(\mathbf{x}_{-})},$$
 (1

Zellinger et al., "Scalable Expectation Estimation with Subtractive Mixture Models", Under submission, 2025

difference of expectation estimator

		Number of components (K)					
		2		4		6	
Method	d	$\log(\widehat{I} - I)$	Time (s)	$\log(\widehat{I} - I)$	Time (s)	$\log(\widehat{I} - I)$	Time (s)
ΔExS	16	-19.507 ± 1.025	0.293 ± 0.004	-19.062 ± 0.823	1.049 ± 0.077	-19.497 ± 1.974	2.302 ± 0.159
ARITS	16	-19.111 ± 1.103	7.525 ± 0.038	-19.299 ± 1.611	7.52 ± 0.023	-18.739 ± 1.024	7.746 ± 0.032
ΔExS	32	-48.411 ± 1.265	0.325 ± 0.012	-48.046 ± 0.972	1.027 ± 0.107	-48.34 ± 0.814	2.213 ± 0.177
ARITS	32	-47.897 ± 1.165	15.196 ± 0.059	-47.349 ± 0.839	15.535 ± 0.059	-47.3 ± 0.978	17.371 ± 0.06
ΔExS	64	-108.095 ± 1.094	0.38 ± 0.034	-107.56 ± 0.616	0.9 ± 0.14	-107.653 ± 0.945	1.512 ± 0.383
ARITS	64	-107.898 ± 1.129	30.459 ± 0.098	-107.33 ± 0.929	33.892 ± 0.119	-107.374 ± 1.138	52.02 ± 0.127

faster than autoregressive sampling

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == structural properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == structural properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

3. Realiable neuro-symbolic Al

logical constraints as circuits, multiplied to probabilistic circuits

Semantic Probabilistic Lavers for Neuro-Symbolic Learning

Kareem Ahmed CS Department

UCLA. ahmedk@cs_ucla_edu

Stefano Teso

CIMeC and DISI University of Trento stefano teso@unitn it Kai-Wei Chang

CS Department LICL A

kwchang@cs.ucla.edu

Guv Van den Broeck CS Department

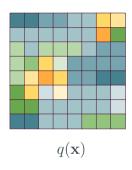
LICLA

guvvdb@cs.ucla.edu

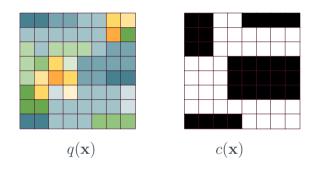
Antonio Vergari

School of Informatics University of Edinburgh avergari@ed.ac.uk

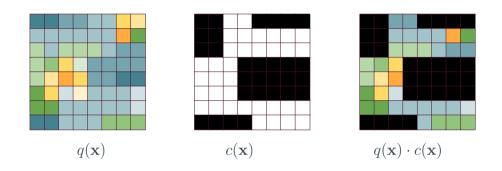
enforce constraints in neural networks at NeurIPS 2022



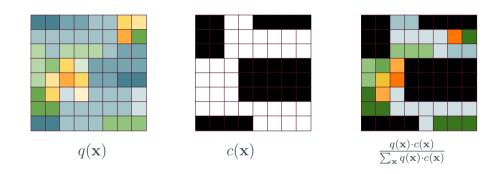
start from a distribution $q(\mathbf{x})$...



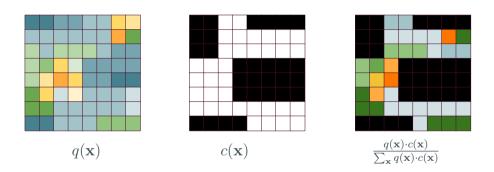
...and cut its support by a constraint $c(\mathbf{x})$



by multiplying them $q(\mathbf{x})c(\mathbf{x})$...

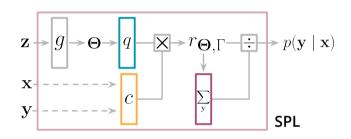


and then renormalizing them!

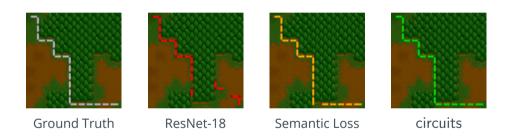


states with zero probability will never be predicted (nor sampled) 65/79

SPL



$$p(\mathbf{y} \mid \mathbf{x}) = \mathbf{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot \mathbf{c}_{K}(\mathbf{x}, \mathbf{y}) / \mathbf{Z}(\mathbf{x})$$
$$\mathbf{Z}(\mathbf{x}) = \sum_{\mathbf{y}} q_{\Theta}(\mathbf{y} \mid \mathbf{x}) \cdot c_{K}(\mathbf{x}, \mathbf{y})$$

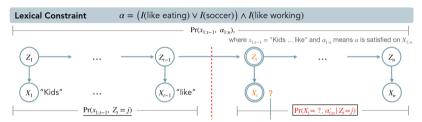


predictions guarantee a logical constraint 100% of the time!

SPL (and variants) everywhere

Tractable Control for Autoregressive Language Generation

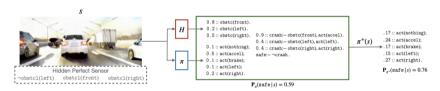
Honghua Zhang *1 Meihua Dang *1 Nanyun Peng 1 Guy Van den Broeck 1



constrained text generation with LLMs (ICML 2023)

Safe Reinforcement Learning via Probabilistic Logic Shields

Wen-Chi Yang¹, Giuseppe Marra¹, Gavin Rens and Luc De Raedt^{1,2}



reliable reinforcement learning (AAAI 23)

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte

University of Edinburgh, UK 1.loconte@sms.ed.ac.uk

Robert Peharz

TU Graz, Austria robert.peharz@tugraz.at

Nicola Di Mauro

University of Bari, Italy nicola.dimauro@uniba.it

Antonio Vergari

University of Edinburgh, UK avergari@ed.ac.uk

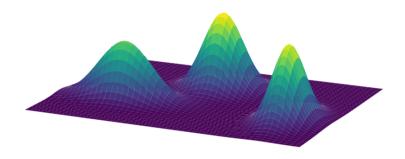
enforce constraints in knowledge graph embeddings oral at NeurIPS 2023

Logically Consistent Language Models via Neuro-Symbolic Integration

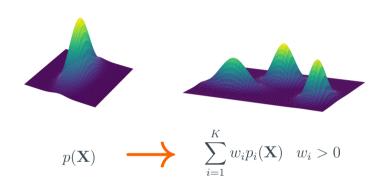
improving logical (self-)consistency in LLMs at ICLR 2025

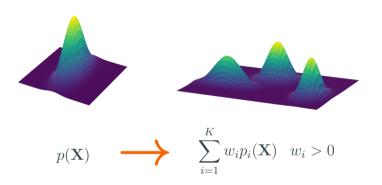
learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit



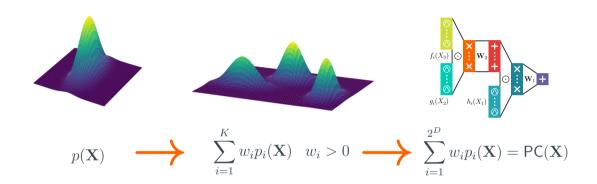
oh mixtures, you're so fine you blow my mind!

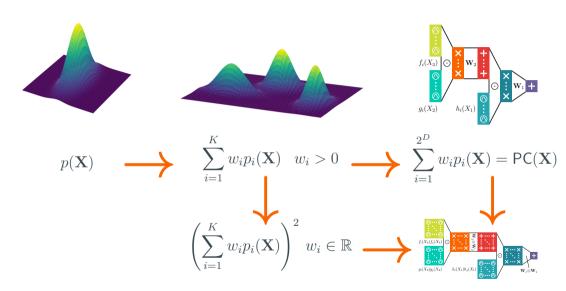




"if someone publishes a paper on **model A**, there will be a paper about **mixtures of A** soon, with high probability"

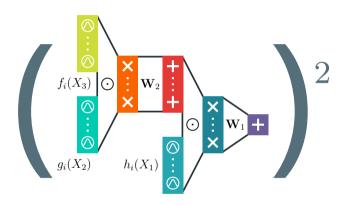
A. Vergari





learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit



questions?