

representation, learning & inference

antonio vergari (he/him)

april-tools.github.io

about probabilities integrals & logic

autonomous & provably reliable intelligent learners

april is
probably a
recursive
identifier of a
lab

who knows mixture models?

who loves mixture models?

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad w_i \ge 0, \quad \sum_{i=1}^{K} w_i = 1$$

GMMs

as computational graphs

$$p(X) = w_1 \cdot p_1(X_1) + w_2 \cdot p_2(X_1)$$

translating inference to data structures...

as computational graphs

$$p(X_1) = 0.2 \cdot p_1(X_1) + 0.8 \cdot p_2(X_1)$$

⇒ ...e.g., as a weighted sum unit over Gaussian input distributions

as computational graphs

$$p(X = 1) = 0.2 \cdot p_1(X_1 = 1) + 0.8 \cdot p_2(X_1 = 1)$$

inference = feedforward evaluation

as computational graphs

A simplified notation:

GMMs

as computational graphs

$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot p_1(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot p_2(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

→ local factorizations...

GMMs

as computational graphs

$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot \mathbf{p_1}(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot \mathbf{p_2}(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

⇒ …are product units

a grammar for tractable computational graphs

I. A simple tractable function is a circuit

e.g., a multivariate Gaussian or

orthonormal polynomial

a grammar for tractable computational graphs

- I. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit

a grammar for tractable computational graphs

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit

a grammar for tractable computational graphs

a grammar for tractable computational graphs

deep mixtures

$$p(\mathbf{x}) = \sum_{\mathcal{T}} \left(\prod_{w_j \in \mathbf{w}_{\mathcal{T}}} w_j \right) \prod_{l \in \mathsf{leaves}(\mathcal{T})} p_l(\mathbf{x})$$

deep mixtures

an exponential number of mixture components!

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == Structural Properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == Structural Properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

3. Realiable neuro-symbolic Al

logical constraints as circuits, multiplied to probabilistic circuits

circuits (and variants) everywhere

Semantic Probabilistic Layers for Neuro-Symbolic Learning

Kareem Ahmed

CS Department UCLA

ahmedk@cs.ucla.edu

Stefano Teso

CIMeC and DISI University of Trento Kai-Wei Chang

CS Department UCLA

kwchang@cs.ucla.edu

Guy Van den Broeck CS Department

UCLA

guyvdb@cs.ucla.edu

Antonio Vergari

School of Informatics University of Edinburgh avergari@ed.ac.uk

enforce constraints in neural networks at NeurIPS 2022

$$p(\mathbf{y} \mid \mathbf{x}) = \mathbf{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot \mathbf{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y}) / \mathbf{z}(\mathbf{x})$$

predictions guarantee a logical constraint 100% of the time!

Tractable Control for Autoregressive Language Generation

Honghua Zhang *1 Meihua Dang *1 Nanyun Peng 1 Guy Van den Broeck 1

constrained text generation with LLMs (ICML 2023)

Safe Reinforcement Learning via Probabilistic Logic Shields

Wen-Chi Yang¹, Giuseppe Marra¹, Gavin Rens and Luc De Raedt^{1,2}

reliable reinforcement learning (AAAI 23)

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte

University of Edinburgh, UK 1.loconte@sms.ed.ac.uk

Robert Peharz

TU Graz, Austria robert.peharz@tugraz.at

Nicola Di Mauro

University of Bari, Italy nicola.dimauro@uniba.it

Antonio Vergari

University of Edinburgh, UK avergari@ed.ac.uk

enforce constraints in knowledge graph embeddings oral at NeurIPS 2023

Logically Consistent Language Models via Neuro-Symbolic Integration

improving logical (self-)consistency in LLMs at ICLR 2025

learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad \frac{\mathbf{w_i} \ge \mathbf{0}}{\sum_{i=1}^{K} w_i} = 1$$

additive MMs

are so cool!

easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

universal approximators...

additive MMs

are so cool!

easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

universal approximators...

additive MMs

are so cool!

easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

universal approximators...

additive MMs

are so cool!

easily represented as shallow PCs

these are **monotonic** PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

universal approximators...

spoiler

shallow mixtures with negative parameters can be *exponentially more compact* than deep ones with positive parameters.

subtractive MMs

also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mear

subtractive MMs

also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mean

subtractive MMs

also called negative/signed/**subtractive** MMs \Rightarrow or **non-monotonic** circuits....

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

⇒ constraints on variance, mean

"Understand when and how we can use negative parameters in deep subtractive mixture models"

"Understand when and how we can use negative parameters in deep non-monotonic squared circuits"

subtractive MMs as circuits

a **non-monotonic** smooth and (structured) decomposable circuit

possibly with negative outputs

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \qquad \mathbf{w_i} \in \mathbb{R},$$

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$

ensure non-negative output

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

still a smooth and (str) decomposable PC with $\mathcal{O}(K^2)$ components! \Longrightarrow but still $\mathcal{O}(K)$ parameters

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

to **renormalize**, we have to compute $\sum_i \sum_j w_i w_j \int c_i(\mathbf{x}) c_j(\mathbf{x}) d\mathbf{x}$

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

to **renormalize**, we have to compute
$$\sum_i \sum_j w_i w_j \int c_i(\mathbf{x}) c_j(\mathbf{x}) d\mathbf{x}$$
 or we pick c_i, c_j to be **orthonormal**...!

EigenVI: score-based variational inference with orthogonal function expansions

Diana Cai Flatiron Institute

dcai@flatironinstitute.org

Charles C. Margossian
Flatiron Institute
cmargossian@flatironinstitute.org

David M. Blei Columbia University david.blei@columbia.edu Chirag Modi Flatiron Institute cmodi@flatironinstitute.org

Robert M. Gower Flatiron Institute rgower@flatironinstitute.org

Lawrence K. Saul Flatiron Institute lsaul@flatironinstitute.org

orthonormal squared mixtures for VI

wait...

"do negative parameters really boost expressiveness? and...always?"

theorem

 $\exists p$ requiring exponentially large monotonic circuits...

theorem

...but compact squared non-monotonic circuits

how to efficiently square (and *renormalize*) a deep PC?

34/59

compositional inference


```
from cirkit.symbolic.functional import integrate, multiply
# create a deep circuit
c = build symbolic circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
    c2 = multiply(c, c)
    return integrate(c2)
```

the unit-wise definition

I. A simple tractable function is a circuit

the unit-wise definition

- 1. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit

the unit-wise definition

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit

the unit-wise definition

the unit-wise definition

a tensorized definition

I. A set of tractable functions is a circuit layer

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layerIII. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \boldsymbol{l}(\mathbf{x}) \odot \boldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = oldsymbol{l}(\mathbf{x}) \odot oldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(oldsymbol{l}(\mathbf{x})oldsymbol{r}(\mathbf{x})^{ op})$$
 // Kronecker

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(oldsymbol{l}(\mathbf{x})oldsymbol{r}(\mathbf{x})^{ op})$$
 // Kronecker

probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer
II. A linear projection of a layer is a circuit layer
III. The product of two layers is a circuit layer
stack layers to build a deep circuit!

circuits layers

as tensor factorizations

Loconte et al., "What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?", TMLR, 2025

how to efficiently square (and *renormalize*) a deep PC?

squaring deep PCs

the tensorized way

squaring deep PCs

the tensorized way

squaring a circuit = squaring layers

squaring deep PCs

the tensorized way

exactly compute $\int c(\mathbf{x}) c(\mathbf{x}) d\mathbf{X}$ in time $O(LK^2)$

how more expressive?

for the ML crowd

 $\exists p$ requiring exponentially large squared non-mono circuits...

...but compact

monotonic circuits...!

what if we use more that one square?

 $\exists p$ requiring exponentially large squared non-mono circuits...

...exponentially large monotonic circuits...

...but compact SOS circuits...!

a hierarchy of subtractive mixtures

complex circuits are SOS (and scale better!)

compositional inference


```
from cirkit.symbolic.functional import integrate, multiply,

→ conjugate

# create a deep circuit with complex parameters
c = build symbolic complex circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
   c1 = conjugate(c)
   c2 = multiply(c, c1)
   return integrate(c2)
```

EigenVI: score-based variational inference with orthogonal function expansions

Diana Cai Flatiron Institute

dcai@flatironinstitute.org

Charles C. Margossian
Flatiron Institute
cmargossian@flatironinstitute.org

David M. Blei Columbia University david.blei@columbia.edu Chirag Modi Flatiron Institute cmodi@flatironinstitute.org

Robert M. Gower Flatiron Institute rgower@flatironinstitute.org

Lawrence K. Saul Flatiron Institute lsaul@flatironinstitute.org

what about deep orthonormal mixtures and arbitrary marginals?

On Faster Marginalization with Squared Circuits via Orthonormalization

Lorenzo Loconte¹ Anto

Antonio Vergari¹

¹ School of Informatics, University of Edinburgh, UK l.loconte@sms.ed.ac.uk, avergari@ed.ac.uk

it sufficies to orthonormalize each layer!

faster marginalization of arbitrary subsets of features

e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[f(\mathbf{x}) \right] \approx \frac{1}{S} \sum_{i=1}^{S} f(\mathbf{x}^{(i)}) \qquad \text{with} \qquad \mathbf{x}^{(i)} \sim q(\mathbf{x})$$

$$\implies \textit{but how to sample from } q?$$

e.g., via sampling

Can we use a subtractive mixture model to approximate expectations?

$$\mathbb{E}_{\mathbf{x} \sim q(\mathbf{x})} \left[f(\mathbf{x}) \right] \approx \frac{1}{S} \sum\nolimits_{i=1}^{S} f(\mathbf{x}^{(i)}) \qquad \text{with} \qquad \mathbf{x}^{(i)} \sim q(\mathbf{x}) \\ \Longrightarrow \quad \textit{but how to sample from } q?$$

use autoregressive inverse transform sampling:

$$x_1 \sim q(x_1), \quad x_i \sim q(x_i|\mathbf{x}_{< i}) \quad \text{for } i \in \{2, ..., d\}$$

⇒ can be slow for large dimensions, requires **inverting the CDF**

difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

$$q(\mathbf{x}) = Z_+ \cdot q_+(\mathbf{x}) - Z_- \cdot q_-(\mathbf{x})$$
 \implies expectations will break down in two "parts"

difference of expectation estimator

Idea: represent q as a difference of two additive mixtures

$$q(\mathbf{x}) = Z_+ \cdot q_+(\mathbf{x}) - Z_- \cdot q_-(\mathbf{x})$$
 \implies expectations will break down in two "parts"

$$\frac{Z_{+}}{S_{+}} \sum_{s=1}^{S_{+}} f(\mathbf{x}_{+}^{(s)}) - \frac{Z_{-}}{S_{-}} \sum_{s=1}^{S_{-}} f(\mathbf{x}_{-}^{(s)}), \text{ where } \frac{\mathbf{x}_{+}^{(s)} \sim q_{+}(\mathbf{x}_{+})}{\mathbf{x}_{-}^{(s)} \sim q_{-}(\mathbf{x}_{-})},$$

difference of expectation estimator

		Number of components (K)					
		2		4		6	
Method	d	$\log(\widehat{I} - I)$	Time (s)	$\log(\widehat{I} - I)$	Time (s)	$\log(\widehat{I} - I)$	Time (s)
ΔExS	16	-19.507 ± 1.025	0.293 ± 0.004	-19.062 ± 0.823	1.049 ± 0.077	-19.497 ± 1.974	2.302 ± 0.159
ARITS	16	-19.111 ± 1.103	7.525 ± 0.038	-19.299 ± 1.611	7.52 ± 0.023	-18.739 ± 1.024	7.746 ± 0.032
ΔExS	32	-48.411 ± 1.265	0.325 ± 0.012	-48.046 ± 0.972	1.027 ± 0.107	-48.34 ± 0.814	2.213 ± 0.177
ARITS	32	-47.897 ± 1.165	15.196 ± 0.059	-47.349 ± 0.839	15.535 ± 0.059	-47.3 ± 0.978	17.371 ± 0.06
ΔExS	64	-108.095 ± 1.094	0.38 ± 0.034	-107.56 ± 0.616	0.9 ± 0.14	-107.653 ± 0.945	1.512 ± 0.383
ARITS	64	-107.898 ± 1.129	30.459 ± 0.098	-107.33 ± 0.929	33.892 ± 0.119	-107.374 ± 1.138	52.02 ± 0.127

faster than autoregressive sampling

Zellinger et al., "Scalable Expectation Estimation with Subtractive Mixture Models", Under submission, 2025

oh mixtures, you're so fine you blow my mind!

"if someone publishes a paper on **model A**, there will be a paper about **mixtures of A** soon, with high probability"

A. Vergari

learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit

questions?