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swiss-army knife of prob ML

(hierarchical)

mixtures
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generalizing them as computational graphs

& circuits

(hierarchical)
mixtures
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a single formalism for many models
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who knows mixture models?

image taken from Hao Tang's course on ASR 5/82



who loves mixture models?

image taken from Hao Tang's course on ASR 6/s2



Hierarchical Gaussian Mixture Model Splatting
for Efficient and Part Controllable 3D
Generation

Qitong Yang, Mingtao Feng, Zijie Wu, Weisheng Dong, Fangfang Wu, Yaonan Wang, Ajmal Mian;
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp.
11104-11114

Inversion of nitrogen and phosphorus
contents in cotton leaves based on the
Gaussian mixture model and differences
in hyperspectral features of UAV

Lei Peng &, Hui-Nan Xin &, Cai-Xia Lv &, Na Li &, Yong-Fu Li S, Qing-Long Geng & &,
Shu-Huang Chen &, Ning Lai &

Gaussian Mixture Flow Matching Models

Hansheng Chen' Kai Zhang? Hao Tan> Zexiang Xu® Fujun Luan?

Leonidas Guibas' Gordon Wetzstein' Sai Bi?

mixture models are everywhere
(still in 2025)

752



K
co(X) = Zi:l w;ic;(X), with w; >0, Zi:l w; =1

image taken from Hao Tang's course on ASR 852
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C(X)=Z4 1wici(X), with w; > 0, Z}_ w; = 1
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image taken from Hao Tang's course on ASR 852



/ Z:wz'pz‘(xﬂx = z@:w@ / pi(x)dx

mixture models can enable tractable inference

(if components are tractable, e.g., for marginals)

952



Hierarchical Decompositional Mixtures of Variational Autoencoders

Ping Liang Tan'> Robert Peharz '

Mixtures of Laplace Approximations

pos ) Efficient Mixture Learning in Black-Box Variational Inference
for Improved Post-Hoc Uncertainty in Deep Learning

123 iman”'? Ri 2 Vi irat I
Runa Eschenhagen*t  Erik Daxberger®  Philipp Hennig  Agustinus Kristiadit Alexandra Hotti Oskar Kviman™'* Ricky Molén'* Victor Elvira® Jens Lagergren

mixture models can enable tractable inference

(even in larger approximate inference pipelines)

952



compile mixtures into circuits...

/ ’ 1 1 ’ \ V(s)g -0
‘ (deep) '
\ circuits (2) x
v

(hierarchical) (hierarchical)
mixtures tensor factorizations
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as computational graphs

0.25

0.20
=015
= 0.10 p(X1) =w1'p1(X1)+w2'p2(X1)

0.05

0.00

—10 -5 0 5 10
=> translating inference to data structures...
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as computational graphs

p(X1) = 0.2:p1(X1)+0.8-p2(X71)

=> ..e.g, as a weighted sum unit over Gaussian input distributions
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as computational graphs

0.8
L /@ 0.09
\ ' p(X1=1)=02-pi(X; =1)
0.2

=—> inference = feedforward evaluation
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as computational graphs

X
! 0.8 A simplified notation:
—> scopes attached to inputs
X, 0.9 =—> edge directions omitted
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how do we learn them?

1252



how do we learn them?
—> by maximizing the (log-)likelihood
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which parameters?

how to reparameterize mixtures/circuits

Input distributions.
Sum unit parameters.

13/82



which parameters?

how to reparameterize mixtures/circuits
Input distributions. Each input can be a different parametric distribution

=> Bernoullis, Categoricals, Gaussians, exponential families, small NNs, ...
Sum unit parameters.
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which parameters?

how to reparameterize mixtures/circuits

Input distributions. Each input can be a different parametric distribution

Sum unit parameters. Enforce them to be non-negative, i.e., w; > 0 but unnormalized
w; =exp(ay), a; €R, i=1,....K

and renormalize the negative log likelihood |oss

N
in— log Ba(xM) — 1 50 (x(DY) dX
min (; og py(x'") Og/pe(x )d
or just renormalize the weights, i.e., Zl w; =1

w = softmax(a), o« € R¥ 135



how do we learn them?
—> by maximizing the (log-)likelihood
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how do we learn them?
—> by maximizing the (log-)likelihood

just SGD your way as usual!

—> orany other gradient-based optimizer

1452



@ O 4
O /O
O O
learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit
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github.com/april-tools/cirkit

o apriltools / cirkit

<> Code (O lssues 30 19 Pullrequests 5 G Discussions () Actions fF Projects 4 (@ Security |~ Insights

D ¥ main - otet learning-a-gaussian-mixture-model.ipynb ()

adrianjav Add CP diagram

Preview | Code Blame 77

Learning a Gaussian Mixture Model

In this notebook, we show how we can create a symbolic circuit with cirkit to create a simple Gaussian mixture model, compile it into
a regular Pytorch model, and learn the cluster assigments using Adam.

Note that this is an illustrative example to show how to build symbolic circuits manually, and there are better ways of fitting Gaussian
mixture models than with stochastic first-order optimization.

a notebook on learning GMMs as circuits

https://github.com/april-tools/cirkit/blob/main/notebooks/
learning-a-gaussian-mixture-model.ipynb
16s:2


https://github.com/april-tools/cirkit/blob/main/notebooks/learning-a-gaussian-mixture-model.ipynb
https://github.com/april-tools/cirkit/blob/main/notebooks/learning-a-gaussian-mixture-model.ipynb

K K
C(X)=Z4 1wici(X), with w; > 0, Z}_ w; = 1

1=

image taken from Hao Tang's course on ASR 17



additive MMs

are so cool!

easily represented as shallow PCs
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these are monotonic PCs
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additive MMs

are so cool!

easily represented as shallow PCs
these are monotonic PCs

if marginals/conditionals are tractable for the compo-
nents, they are tractable for the MM
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additive MMs

are so cool!

easily represented as shallow PCs
these are monotonic PCs

if marginals/conditionals are tractable for the compo-
nents, they are tractable for the MM

they are universal approximators...

1852
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however...

GMM (K = 2)
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however...

GMM (K = 2) GMM (K = 16)
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however...

GMM (K =2) GMM((K = 16) nGMM? (K = 2)
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shallow mixtures

with negative parameters

can be exponentially more compact than
deep ones with positive parameters

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 20sz2



subtractive MMs

also called negative/signed/subtractive MMs
=> or non-monotonic circuits,...

2152



subtractive MMs

also called negative/signed/subtractive MMs
=> or non-monotonic circuits,...

issue: how to preserve non-negative outputs?
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subtractive MMs

also called negative/signed/subtractive MMs
=> or non-monotonic circuits,...

issue: how to preserve non-negative outputs?
well understood for simple parametric forms

e.g., Weibulls, Gaussians
—> constraints on variance, mean

2152



subtractive MMs as circuits

a non-monotonic smooth and (structured)
decomposable circuit
=> possibly with negative outputs

K
oX) = Zi:l w;c; (X)), w; € R,

225,



squaring shallow MMs

A(X) = (ZK wicz-(X)>2

=1

=—> ensure non-negative output

2352



squaring shallow MMs

245,



squaring shallow MMs

200 = (Y7 w0

i=1

=3 e (X)o(X)

still a smooth and (str) decomposable PC with O(KQ) components!
—> butstill O(K') parameters

245,



squaring shallow MMs

200 = (Y7 w0

i=1

=3 e (X)o(X)

how to renormalize?

245,



squaring shallow MMs

200 = (Y7 w0

i=1

=3 e (X)o(X)

to renormalize, we have to compute Y, 3~ w;w; [ ¢i(x)e;(x)dx

245,



squaring shallow MMs

200 = (Y7 w0

i=1

=3 e (X)o(X)

to renormalize, we have to compute Y, 3~ w;w; [ ¢i(x)e;(x)dx
or we pick ¢;, c; to be orthonormal...!

245,



EigenVI: score-based variational inference with
orthogonal function expansions

Diana Cai Chirag Modi
Flatiron Institute Flatiron Institute
dcai@flatironinstitute.org cmodi@flatironinstitute.org
Charles C. Margossian Robert M. Gower
Flatiron Institute Flatiron Institute
cmargossian@flatironinstitute.org rgower@flatironinstitute.org
David M. Blei Lawrence K. Saul
Columbia University Flatiron Institute
david.blei@columbia.edu lsaul@flatironinstitute.org

orthonormal squared mixtures for Vi
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how do we learn them?
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how do we learn them?
—> by maximizing the (log-)likelihood

26/52



which parameters?

how to reparameterize non-monotonic mixtures/circuits

Input functions.
Sum unit parameters.

27152



which parameters?

how to reparameterize non-monotonic mixtures/circuits
Input functions. Each input can be a different parametric function

=> Bernoullis, Categoricals, Gaussians, polynomials, small NNs, ...
Sum unit parameters.

27152



which parameters?

how to reparameterize non-monotonic mixtures/circuits

Input functions. Each input can be a different parametric function

Sum unit parameters. They can be negative, i.e., w; € R and we we need to
renormalize the negative log likelihood loss after squaring

N
in — (@)Y _ 2 (%)
min (Z 2log cp(x'") — log / cy(x') dX)

=1

27152



how do we learn them?
—> by maximizing the (log-)likelihood

2852



how do we learn them?
—> by maximizing the (log-)likelihood

just SGD your way as usual!

—> orany other gradient-based optimizer

2852



what about deep mixtures/circuits?

2952



as computational graphs

p(X) =wy - pr(X') - pr(X7)+
wa 'pz( ) 'pz( )

—> local factorizations...

30ss2



as computational graphs

Wa
X ((W—0——
p(X) =wy - p1(X') - pr(X")+
X? @ w1 Wa 'p2<Xm) 'p2(XW)
XL
2 @ 8 =—> ...are product units

X5 ()

30/s2



probabilistic circuits (PCs)

a grammar for tractable computational graphs

I. A simple tractable function is a circuit
—> eg., a multivariate Gaussian or small
neural network

3182



probabilistic circuits (PCs)

a grammar for tractable computational graphs

I. A simple tractable function is a circuit

1. A weighted combination of circuits is a circuit

w1 wa

3152



probabilistic circuits (PCs)

a grammar for tractable computational graphs

I. A simple tractable function is a circuit
1. A weighted combination of circuits is a circuit

IIl. A product of circuits is a circuit

w1 wa

3152



probabilistic circuits (PCs)

a grammar for tractable computational graphs

3152



probabilistic circuits (PCs)

a grammar for tractable computational graphs

3152



probabilistic queries gl feedforward LA'CUTELILTY

p(Xl = —1.85,X2 = 0.5,X3 = —1.3,X4 = 02)

3252



probabilistic queries gl feedforward LA'CUTELILTY

p(Xl = —1.85,X2 = 0.5,X3 = —1.3,X4 - 02)

3252



probabilistic queries gl feedforward [I'CIUEL 1))

p(X,=-185 X, =05 X3=-1.3 X, =02)=0.75

05—,@&,@ -13-»@ o.z-»@
o \ \ \
o
CA
0.3 0.4 0.5
s —@>Q S-0—@=>0—@
X X X N
2] o =~
S O
0.5 0.5 0.8 0.8
@il -8
©
R

Sl
0.9
—1.85 —> —> -1.3 —>@ 0.2 —>®

3252



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer

XX
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probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer

Il. A linear projection of a layer is a circuit layer

c(x) = WI(x)

OO0 &

3382



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer

Il. A linear projection of a layer is a circuit layer

c(x) = WI(x)

+
/W

3382



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer
Il. A linear projection of a layer is a circuit layer

IIl. The product of two layers is a circuit layer
c(x) =1l(x) ®©r(x) //Hadamard
08
/W N NN
X B D

3352



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer
Il. A linear projection of a layer is a circuit layer

IIl. The product of two layers is a circuit layer

c(x) =1l(x) ®©r(x) //Hadamard

-
/S W\ N
OO 0 oo OJl® ©

3352



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer
Il. A linear projection of a layer is a circuit layer

IIl. The product of two layers is a circuit layer

¢(x) = vec(l(x)r(x)")  //Kronecker

-
oW N N
OO0 0 0o OJI® ©

3352



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer
Il. A linear projection of a layer is a circuit layer

IIl. The product of two layers is a circuit layer

c(x) = vec(l(x)r(x) T // Kronecker

@@ ® O @@ )

3352



probabilistic circuits (PCs)

a tensorized definition

I. A set of tractable functions is a circuit layer
Il. A linear projection of a layer is a circuit layer
IIl. The product of two layers is a circuit layer

stack layers to build a deep circuit!

3352



tensor factorizations

as circuits

(H)| c(z1,z2,3)

= A=A
~ o (10 NG
o~ o ve T OALICICICIOAON
3 1 v o
Oy

[l

2B ,@) @ @) [CIRN )]

zll va:12 xal o2 x3l Ung

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?", TMLR, 2025
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@ O 4
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learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit
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github.com/april-tools/cirkit

) Pullrequests 5 Y ® Actions [ Projects 4 @ Securty |~ Insights

P ma learning-a-circuit.ipynb

adrianjav fix relative lin

Preview  Code Blame

Learning and Evaluating a Probabilistic Circuit

In this notebook, we instantiate, learn, and evaluate a probabilistic circuit using cirkit . The probabilistic circuit we build estimates the
distribution of MNIST images, which is then evaluated on unseen images, compute marginal probabilities, and sample new images. Here,
we focus on the simplest experimental setting, where we want to instantiate a probabilistic circuit for MNIST images using some

hyperparameters of our own choice, such as the type of the layers, their size and how to parameterize them. Then, we learn the
parameters of the circuit and perform inference using PyTorch.

a notebook on learning a deep circuit on MNIST

https://github.com/april-tools/cirkit/blob/main/notebooks/
learning-a-circuit.ipynb 36/


https://github.com/april-tools/cirkit/blob/main/notebooks/learning-a-circuit.ipynb
https://github.com/april-tools/cirkit/blob/main/notebooks/learning-a-circuit.ipynb

> loreloc U

Preview | Code Blame

Notebook on Region Graphs and Sum Product Layers

Goals

By the end of this tutorial you will:

« know what a region graph is

« know how to choose between region graphs for your circuit

» understand how to parametrize a circuit by choosing a sum product layer
« build circuits to tractably estimate a probability distribution over images’

mix& match your structure and layers

https://github.com/april-tools/cirkit/blob/main/notebooks/
region-graphs-and-parametrisation.ipynb 37:e2


https://github.com/april-tools/cirkit/blob/main/notebooks/region-graphs-and-parametrisation.ipynb
https://github.com/april-tools/cirkit/blob/main/notebooks/region-graphs-and-parametrisation.ipynb
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an exponential number of mixture components!

3852



1. A grammar for tractable models
One formalism to represent many probabilistic models
=> #HMMs #Trees #XGBoost, Tensor Networks, ...

3952



1. A grammar for tractable models
One formalism to represent many probabilistic models
=> #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == structural properties!!!
Exact computations of reasoning tasks are certified by guaranteeing certain structural
properties. #marginals #expectations #MAP, #product ...

3952



structural properties

the combination of certain
- structural properties
tractable computation of
certain query classes

compatibility

determinism

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 402



structural properties

property A the combination of certain
structural properties
property B guarantees

tractable computation of

property C certain query classes

property D

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 402



structural properties

pro perty A tractable computation of arbitrary integrals

property B ply) = / p(z,y)dZ, YYCX, Z=X\Y
icient and diti
property C = sufficient and necessary conditions

=> tractable partition function
=> also any conditional is tractable

property D

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 402



structural properties

m tractable computation of arbitrary integrals
decomposability py) = / p(z,y)dZ, YYCX, Z=X\Y

=> sufficient and necessary conditions

proper ty c ]jc;lr a single feedforwarg evaluation
=> tractable partition function
prop erty D => also any conditional is tractable

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 402



structural properties

m smoothness A decomposability = multilinearity

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 402



multilinearity

the inputs of product units are defined over disjoint sets of variables

filz1) fo(@1)  gi(x2) g2(a2) fi(z1) fa(z1)  gi(z1) ga(z1)

v/ multilinear X not multilinear

Darwiche and Marquis, “A knowledge compilation map”,, 2002 A



multilinearity

the inputs of product units are defined over disjoint sets of variables

fi(z1) fa(z1)  gi(z2) ga(w2) fi(z1) fa(z1)  gi(z1) ga(z1)

decomposable circuit non-decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”,, 2002 A



multilinearity

the inputs of sum units are defined over the same variables

fi(z1) fa(z1)  gi(z1) galw1)

v/ multilinear X not multilinear

Darwiche and Marquis, “A knowledge compilation map”,, 2002 42



multilinearity

the inputs of sum units are defined over the same variables

fi(z1) fa(z1)  gi(z1) ga(m1) fi(z1) fa(z1)  gi(z2) ga(z2)

smooth circuit non-smooth circuit

Darwiche and Marquis, “A knowledge compilation map”,, 2002 42



= Y (L1414 B evaluation

p(X1 = —1.85,X4 = 02)
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= VL L1} evaluation

p(Xl = —1.85,X4 = 02)

- -
>
o
A \ \ \
‘A
0.3 0.4 0.5
X5 — —> —> —> —>
2 . "
3 o S
o 2
0.5 0.5 0.8 0.8
~1.85 —> —> —> QL —> QL —> —> —> —> 0.59
B
o

4
0.9
o v @ @
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tractable marginals on PCs

Original Missing Conditional sampl

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,, u“
2020 /82



use tractable models
inside intractable pipelines
where it matters!

45/52



Embeddings

® 9

z~pe(Z|X=%x) —> P—

\ED/ @ *@%%ﬁ \

X Circuit Encoder ¢

tractahble conditioning over every missing mask
(under submission)

46/52



Data

ml

APC MIWAE VAE SPAE

MNIST

CIFAR CelebA
50% 80% Vert Ctr 0% % Vert Ctr 0%

better than (V)AEs for missing values
(under submission)

LSUN
80% Vert Ctr

4752



how to efficiently square (and renormalize) a deep PC?

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 485



cirkit

from cirkit.symbolic.functional import integrate, multiply

#
# create a deep circuit
¢ = build_symbolic_circuit('quad-tree-4')

#
# compute the partition function of c 2
def renormalize(c):
c2 = multiply(c, c)
return integrate(c2)
4952



structural properties

decomposability

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 5055



structural properties

m Integrals involving two or more functions:
e.g., expectations

decomposability

compatibility
when both p(x) and f(x) are circuits

property D p(x) and f(x)

E,., J0) = [ 69 0 dx

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 5055



compatibility

compatibile circuits

Darwiche and Marquis, “A knowledge compilation map”,, 2002 5182



compatibility

non-compatibile circuits

Darwiche and Marquis, “A knowledge compilation map”,, 2002 5182



tractable products

; —5-
o

X2 e\ 1 3
X OO
\ xﬁ‘@‘{b 2 smooth, decomposable

compatible

compute B f(x) = [ p(x) f(x) dxinO(|p|[f])

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeuriPS, 2021 522



how to efficiently square (and renormalize) a deep PC?

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 53/



squaring deep PCs

the tensorized way

545,



squaring deep PCs

the tensorized way

squaring a circuit = squaring layers

545,



squaring deep PCs

the tensorized way

exactly compute [ c¢(x)c(x)dX in time O(LK?)

545,



o ~ 3
i .. é . . o
. 3 p' requiring exponentially large
o
Bk monotonic circuits...
el

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 5582



X

...but compact

| QDD |

| QDD |

squared non-monotonic circuits

Loconte et al., “Subtractive Mixture Models via Squaring: Representation and Learning”, ICLR, 2024 5582



more expressive?

5652



more expressive?

data monoPC monoPC? non — monoPC?

5752



how more expressive?

real-world data

025 05
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5952

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025



3

...but compact

ic circuits...

monoton

5952

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025



what if we use more that one square?

60,52



ts...

-mono circul

3 p"” requiring exponentially large squared non

61/52

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025



ts...

IC CIrcul

...exponentially large monoton

61/52

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025



ircuits...!

...but compact SOS c

61/52

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025



isd — AEZ p
cm 2 _
(Theorem 5)
(Proposition 2)
. «SUM «UDISJ
Open Question 1 (Theorem 1) (Theorem 0)
o «UPS UTQ
Open Question 2 (Theorem 2) (Theorem B.3)

a hierarchy of subtractive mixtures

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025 62/s2



we can define circuits (and hence mixtures) over the Complex:
A(x) = c(x)e(x), e(x)eC
and then we can note that they can be written as a SOS form

A(x) = r(x)* +i(x)? r(x),i(x) € R

complex circuits are SOS (and scale better!)

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025 63152



BPD MNIST BPD CelebA
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complex circuits are SOS (and scale better!)

Loconte, Mengel, and Vergari, “Sum of Squares Circuits”, AAAl, 2025
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“use squared mixtures
over complex numbers
(and you get a SOS for free)”
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“use squared mixtures
over complex numbers
(and you get a SOS for free)”

—>  but how to implement them?

6452



cirkit

from cirkit.symbolic.functional import integrate, multiply,
— conjugate

# create a deep circuit with complex parameters
¢ = build_symbolic_complex_circuit('quad-tree-4')

# compute the partition function of c 2
def renormalize(c):
cl = conjugate(c)
c2 = multiply(c, c1)
return integrate(c2)
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Learning and Evaluating a Probabilistic Circuit

In this notebook, we instantiate, learn, and evaluate a probabilistic circuit using cirkit . The probabilistic circuit we build estimates the
distribution of MNIST images, which is then evaluated on unseen images, compute marginal probabilities, and sample new images. Here,
we focus on the simplest experimental setting, where we want to instantiate a probabilistic circuit for MNIST images using some

hyperparameters of our own choice, such as the type of the layers, their size and how to parameterize them. Then, we learn the
parameters of the circuit and perform inference using PyTorch.

a notebook on learning SOS subtractive mixtures

https://github.com/april-tools/cirkit/blob/main/notebooks/
sum-of-squares—-circuits.ipynb
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https://github.com/april-tools/cirkit/blob/main/notebooks/sum-of-squares-circuits.ipynb
https://github.com/april-tools/cirkit/blob/main/notebooks/sum-of-squares-circuits.ipynb

approximate inference

e.g., via sampling
Can we use a subtractive mixture model to approximate expectations?

Exngx) [f SZ L Tx xD) with  x@ ~ g(x)

=—> but how to sample from q?

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?", TMLR, 2025 6752



how to sample from a monotonic deep PC?

6852



how to sample from a non-monotonic deep PC? con,



approximate inference

e.g., via sampling
Can we use a subtractive mixture model to approximate expectations?

Exngx) [f SZ L Tx xD) with  x@ ~ g(x)

=—> but how to sample from a non-monotonic q?
use autoregressive inverse transform sampling:

Ty~ Q(xl)a €T~ q(xz‘x<1,) for ¢ € {2, ,d}

=> can be slow for large dimensions, requires inverting the CDF

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?", TMLR, 2025 7052



approximate inference

difference of expectation estimator

Idea: represent g as a difference of two additive mixtures

9192 9193

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025 7152



approximate inference

difference of expectation estimator

Idea: represent g as a difference of two additive mixtures

qx) =27, qi(x) - Z_-q-(x)

—> expectations will break down in two “parts”

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025 7152



approximate inference

difference of expectation estimator

Idea: represent g as a difference of two additive mixtures

qx) =27, qi(x) - Z_-q-(x)

—> expectations will break down in two “parts”

(s)
s Z_ Xy ~q.(x
L ) Y ) where XTI

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025 7152



approximate inference

difference of expectation estimator

Number of components (K)

2 4 [
Method d log(\IA— 1)) Time (s) log(|f— 1)) Time (s) log(|f— 1)) Time (s)
AExS 16 -19.507 +1.025  0.293 £ 0.004 -19.062 + 0.823 1.049 £0.077  -19.497 £ 1974 2302 £ 0.159
ARITS 16 -19.111 £1.103  7.5254+0.038 -19.299 + 1.611 75240023  -18.739 £1.024 7.746 + 0.032
AExS 32 -48411£1265 032540012 -48.046 + 0.972 1.027 £+ 0.107 -48.34 £ 0814 2213 £0.177
ARITS 32 -47.897 £ 1.165 15.196 £0.059 -47.349 £0.839 15.535 £ 0.059 -47.3+£0978 17.371 £0.06
AEXS 64 -108.095 + 1.094 0.38 +0.034 -107.56 + 0.616 09+0.14 -107.653 £0.945 1.512+0.383
ARITS 64 -107.898 £1.129 30.459 +£0.098 -107.33 £0929 33.892+0.119 -107.374 & 1.138 52.02 £ 0.127

faster than autoregressive sampling

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025
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approximate inference

difference of expectation estimator

Number of components (K)

2 4 [
Method d log(\IA— 1)) Time (s) log(|f— 1)) Time (s) log(|f— 1)) Time (s)
AExS 16 -19.507 +1.025  0.293 £ 0.004 -19.062 + 0.823 1.049 £0.077  -19.497 £ 1974 2302 £ 0.159
ARITS 16 -19.111 £1.103  7.5254+0.038 -19.299 + 1.611 75240023  -18.739 £1.024 7.746 + 0.032
AExS 32 -48411£1265 032540012 -48.046 + 0.972 1.027 £+ 0.107 -48.34 £ 0814 2213 £0.177
ARITS 32 -47.897 £ 1.165 15.196 £0.059 -47.349 £0.839 15.535 £ 0.059 -47.3+£0978 17.371 £0.06
AEXS 64 -108.095 + 1.094 0.38 +0.034 -107.56 + 0.616 09+0.14 -107.653 £0.945 1.512+0.383
ARITS 64 -107.898 £1.129 30.459 +£0.098 -107.33 £0929 33.892+0.119 -107.374 & 1.138 52.02 £ 0.127

how to learn SMMs via VI...?

Zellinger et al., “Scalable Expectation Estimation with Subtractive Mixture Models”,
Under submission, 2025
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towards conclusions...
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oh mixtures, you're so fine you blow my mind!

image taken from Hao Tang's course on ASR 75s2



p(X) % szpL(X) w; >0

76/52



p(X) % sz}?L(X) w; >0

“if someone publishes a paper on model A, there will be a paper about
mixtures of A soon, with high probability” A. Vergari
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i=1 i=1
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pX)  —> > wipi(X) w; >0 — 3 wip(X) = PC(X)
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@ O 4
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O O
learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit
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github.com/april-tools/cirkit

questions?
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structural properties

decomposability

compatibility

determinism

Vergari et al., “"A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
NeurlPS, 2021 8152



determinism

the inputs of sum units are defined over disjoint supports

e

l{x <7t falz l{fv > v} fi(z)
v 7
deterministic circuit non-deterministic circuit

Darwiche and Marquis, “A knowledge compilation map”,, 2002 8252



