

subtractive mixture models

representation, learning & inference

antonio vergari (he/him)

thanks to...

Lorenzo Loconte *U of Edinburgh*

Lena Zellinger *U of Edinburgh*

Aleksanteri Sladek **Aalto U**

Gennaro Gala **TU Eindhoven**

Adrian Javaloy **U of Edinburgh**

and moar...

april-tools.github.io

autonomous & provably reliable intelligent learners

about probabilities integrals & logic

april is probably a recursive identifier of a lab

today's topic...

swiss-army knife of prob ML

generalizing them as computational graphs

a single formalism for many models

who knows mixture models?

who loves mixture models?

Hierarchical Gaussian Mixture Model Splatting for Efficient and Part Controllable 3D Generation

Qitong Yang, Mingtao Feng, Zijie Wu, Weisheng Dong, Fangfang Wu, Yaonan Wang, Ajmal Mian; Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), 2025, pp. 11104-11114 Inversion of nitrogen and phosphorus contents in cotton leaves based on the Gaussian mixture model and differences in hyperspectral features of UAV

<u>Lei Peng ⊠ , Hui-Nan Xin ⊠ , Cai-Xia Lv ⊠ ,</u> Na Li 题 , <u>Yong-Fu Li 题 , Qing-Long Geng 오 ⊠ ,</u> Shu-Huang Chen ⊠ , Ning Lai 题

Gaussian Mixture Flow Matching Models

Hansheng Chen ¹ Kai Zhang ² Hao Tan ² Zexiang Xu ³ Fujun Luan ² Leonidas Guibas ¹ Gordon Wetzstein ¹ Sai Bi ²

mixture models are everywhere (still in 2025)

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad w_i \ge 0, \quad \sum_{i=1}^{K} w_i = 1$$

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad \frac{\mathbf{w_i} \ge \mathbf{0}}{\sum_{i=1}^{K} w_i} = 1$$

$$\int \sum_{i} w_{i} p_{i}(\mathbf{x}) d\mathbf{x} = \sum_{i} w_{i} \int p_{i}(\mathbf{x}) d\mathbf{x}$$

mixture models can enable tractable inference

(if components are tractable, e.g., for marginals)

Hierarchical Decompositional Mixtures of Variational Autoencoders

Ping Liang Tan 12 Robert Peharz 1

Mixtures of Laplace Approximations for Improved *Post-Hoc* Uncertainty in Deep Learning

Efficient Mixture Learning in Black-Box Variational Inference

Runa Eschenhagen*, Erik Daxberger*, Philipp Hennigi, Agustinus Kristiadi

Alexandra Hotti *123 Oskar Kviman *12 Ricky Molén 12 Víctor Elvira 4 Jens Lagergren 12

mixture models can enable tractable inference (even in larger approximate inference pipelines)

compile mixtures into circuits...

GMMs

as computational graphs

$$p(X_1) = w_1 \cdot p_1(X_1) + w_2 \cdot p_2(X_1)$$

as computational graphs

$$p(X_1) = 0.2 \cdot p_1(X_1) + 0.8 \cdot p_2(X_1)$$

⇒ ...e.g., as a weighted sum unit over Gaussian input distributions

as computational graphs

$$p(X_1 = 1) = 0.2 \cdot p_1(X_1 = 1) + 0.8 \cdot p_2(X_1 = 1)$$

⇒ inference = feedforward evaluation

as computational graphs

A simplified notation:

how do we learn them?

how do we learn them?

 \Rightarrow by maximizing the (log-)likelihood

which parameters?

how to reparameterize mixtures/circuits

Input distributions.
Sum unit parameters.

which parameters?

how to reparameterize mixtures/circuits

Input distributions. Each input can be a different parametric distribution

⇒ Bernoullis, Categoricals, Gaussians, exponential families, small NNs, ...

Sum unit parameters.

which parameters?

how to reparameterize mixtures/circuits

Input distributions. Each input can be a different parametric distribution

Sum unit parameters. Enforce them to be non-negative, i.e., $w_i \geq 0$ but unnormalized

$$w_i = \exp(\alpha_i), \quad \alpha_i \in \mathbb{R}, \quad i = 1, \dots, K$$

and renormalize the *negative log likelihood* loss

$$\min_{\theta} - \left(\sum_{i=1}^{N} \log \tilde{p}_{\theta}(\mathbf{x}^{(i)}) - \log \int \tilde{p}_{\theta}(\mathbf{x}^{(i)}) d\mathbf{X} \right)$$

or just renormalize the weights, i.e., $\sum_i w_i = 1$

$$\mathbf{w} = \mathsf{softmax}(\boldsymbol{\alpha}), \quad \boldsymbol{\alpha} \in \mathbb{R}^K$$

how do we learn them?

 \Rightarrow by maximizing the (log-)likelihood

how do we learn them?

 \Rightarrow by maximizing the (log-)likelihood

just SGD your way as usual!

 \Rightarrow or any other gradient-based optimizer

learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit

a notebook on learning GMMs as circuits

https://github.com/april-tools/cirkit/blob/main/notebooks/ learning-a-gaussian-mixture-model.ipynb

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad \frac{\mathbf{w_i} \ge \mathbf{0}}{\sum_{i=1}^{K} w_i} = 1$$

are so cool!

easily represented as shallow PCs

these are *monotonic* PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

they are *universal approximators*...

are so cool!

easily represented as shallow PCs

these are *monotonic* PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

they are *universal approximators*...

are so cool!

easily represented as shallow PCs

these are *monotonic* PCs

if marginals/conditionals are tractable for the components, they are tractable for the $\ensuremath{\mathsf{MM}}$

they are *universal approximators*..

are so cool!

easily represented as shallow PCs

these are *monotonic* PCs

if marginals/conditionals are tractable for the components, they are tractable for the MM

they are *universal approximators*...

19/70

 $\operatorname{GMM}\left(K=2\right) \quad \operatorname{GMM}\left(K=16\right) \quad \operatorname{nGMM}^{2}\left(K=2\right)$

spoiler

shallow mixtures
with negative parameters
can be exponentially more compact than
deep ones with positive parameters

subtractive MMs

also called negative/signed/subtractive MMs

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mear

subtractive MMs

also called negative/signed/**subtractive** MMs

⇒ or non-monotonic circuits,...

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

constraints on variance, mear

subtractive MMs

also called negative/signed/**subtractive** MMs

→ or non-monotonic circuits,...

issue: how to preserve non-negative outputs?

well understood for simple parametric forms e.g., Weibulls, Gaussians

⇒ constraints on variance, mean

subtractive MMs as circuits

a **non-monotonic** smooth and (structured) decomposable circuit

⇒ possibly with negative outputs

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \qquad \mathbf{w_i} \in \mathbb{R},$$

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$

⇒ ensure non-negative output

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

still a smooth and (str) decomposable PC with $\mathcal{O}(K^2)$ components! \Longrightarrow but still $\mathcal{O}(K)$ parameters

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

how to renormalize?

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

to **renormalize**, we have to compute $\sum_i \sum_j w_i w_j \int c_i(\mathbf{x}) c_j(\mathbf{x}) d\mathbf{x}$

$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

to **renormalize**, we have to compute $\sum_i \sum_j w_i w_j \int c_i(\mathbf{x}) c_j(\mathbf{x}) d\mathbf{x}$ \implies closed-form for e.g., if c_i, c_j are **exponential families...!**

how do we learn them?

how do we learn them?

 \Rightarrow by maximizing the (log-)likelihood

which parameters?

how to reparameterize non-monotonic mixtures/circuits

Input functions.
Sum unit parameters.

which parameters?

how to reparameterize non-monotonic mixtures/circuits

Input functions. Each input can be a different parametric *function*

⇒ Bernoullis, Categoricals, Gaussians, **polynomials**, small NNs, ...

Sum unit parameters.

which parameters?

how to reparameterize non-monotonic mixtures/circuits

Input functions. Each input can be a different parametric *function*

Sum unit parameters. They can be negative, i.e., $w_i \in \mathbb{R}$ and we we need to renormalize the **negative log likelihood** loss after squaring

$$\min_{\theta} - \left(\sum_{i=1}^{N} 2 \log c_{\theta}(\mathbf{x}^{(i)}) - \log \int c_{\theta}^{2}(\mathbf{x}^{(i)}) d\mathbf{X} \right)$$

how do we learn them?

 \Rightarrow by maximizing the (log-)likelihood

how do we learn them?

 \Rightarrow by maximizing the (log-)likelihood

just SGD your way as usual!

 \Rightarrow or any other gradient-based optimizer

what about deep mixtures/circuits?

GMMs

as computational graphs

$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}') \cdot p_1(\mathbf{X}'') + w_2 \cdot p_2(\mathbf{X}''') \cdot p_2(\mathbf{X}'''')$$

⇒ local factorizations...

GMMs

as computational graphs

$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}') \cdot p_1(\mathbf{X}'') + w_2 \cdot p_2(\mathbf{X}'''') \cdot p_2(\mathbf{X}'''')$$

⇒ ...are product units

a grammar for tractable computational graphs

I. A simple tractable function is a circuit
 ⇒ e.g., a multivariate Gaussian or small
 neural network

a grammar for tractable computational graphs

- I. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit

a grammar for tractable computational graphs

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

III. A product of circuits is a circuit

a grammar for tractable computational graphs

a grammar for tractable computational graphs

probabilistic queries = feedforward evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

probabilistic queries = feedforward evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

probabilistic queries = feedforward evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) = 0.75$$

a tensorized definition

I. A set of tractable functions is a circuit layer

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layer

$$c(\mathbf{x}) = \mathbf{W} \boldsymbol{l}(\mathbf{x})$$

a tensorized definition

I. A set of tractable functions is a circuit layerII. A linear projection of a layer is a circuit layerIII. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \boldsymbol{l}(\mathbf{x}) \odot \boldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = oldsymbol{l}(\mathbf{x}) \odot oldsymbol{r}(\mathbf{x})$$
 // Hadamard

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(oldsymbol{l}(\mathbf{x})oldsymbol{r}(\mathbf{x})^{ op})$$
 // Kronecker

a tensorized definition

I. A set of tractable functions is a circuit layer

II. A linear projection of a layer is a circuit layer

III. The product of two layers is a circuit layer

$$c(\mathbf{x}) = \mathsf{vec}(oldsymbol{l}(\mathbf{x})oldsymbol{r}(\mathbf{x})^{ op})$$
 // Kronecker

a tensorized definition

I. A set of tractable functions is a circuit layer
II. A linear projection of a layer is a circuit layer
III. The product of two layers is a circuit layer
stack layers to build a deep circuit!

tensor factorizations

as circuits

Loconte et al., "What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?", TMLR, 2025

learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit

a notebook on learning a deep circuit on MNIST

https://github.com/april-tools/cirkit/blob/main/notebooks/ learning-a-circuit.ipynb

mix& match your structure and layers

https://github.com/april-tools/cirkit/blob/main/notebooks/ region-graphs-and-parametrisation.ipynb

deep mixtures

$$p(\mathbf{x}) = \sum_{\mathcal{T}} \left(\prod_{w_j \in \mathbf{w}_{\mathcal{T}}} w_j \right) \prod_{l \in \mathsf{leaves}(\mathcal{T})} p_l(\mathbf{x})$$

deep mixtures

an exponential number of mixture components!

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Tractability == structural properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

smoothness

decomposability

compatibility

determinism

the combination of certain structural properties guarantees tractable computation of certain query classes

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

property A

property B

property C

property D

the combination of certain structural properties guarantees tractable computation of certain query classes

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

property A

property B

property C

property D

tractable computation of *arbitrary integrals*

$$p(\mathbf{y}) = \int p(\mathbf{z}, \mathbf{y}) d\mathbf{Z}, \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

⇒ **sufficient** and **necessary** conditions for a single feedforward evaluation

⇒ tractable partition function

⇒ also any conditional is tractable

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

smoothness

decomposability

property C

property D

tractable computation of arbitrary integrals

$$p(\mathbf{y}) = \int p(\mathbf{z}, \mathbf{y}) d\mathbf{Z}, \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

sufficient and necessary conditions for a single feedforward evaluation

⇒ tractable partition function

⇒ also any conditional is tractable

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

smoothness

 $smoothness \land decomposability \Longrightarrow multilinearity$

decomposability

property C

property D

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

tractable marginals on PCs

Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", , 2020

use tractable models inside intractable pipelines where it matters!

tractable + intractable

tractable conditioning over every missing mask

(under submission)

better than (V)AEs for missing values

(under submission)

how to efficiently square (and *renormalize*) a deep PC?

compositional inference


```
from cirkit.symbolic.functional import integrate, multiply
# create a deep circuit
c = build symbolic circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
   c2 = multiply(c, c)
   return integrate(c2)
```

smoothness

decomposability

property C

property D

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

smoothness

decomposability

compatibility

property D

Integrals involving two or more functions: e.g., expectations

$$\mathbb{E}_{\mathbf{x} \sim \frac{p}{p}} \left| f(\mathbf{x}) \right| = \int \frac{p(\mathbf{x})}{|f(\mathbf{x})|} d\mathbf{x}$$

when both $p(\mathbf{x})$ and $f(\mathbf{x})$ are circuits

how to efficiently square (and *renormalize*) a deep PC?

squaring deep PCs

the tensorized way

squaring deep PCs

the tensorized way

squaring a circuit = squaring layers

squaring deep PCs

the tensorized way

exactly compute $\int c(\mathbf{x}) c(\mathbf{x}) d\mathbf{X}$ in time $O(LK^2)$

theorem I

 $\exists p'$ requiring exponentially large monotonic circuits...

theorem I

...but compact squared non-monotonic circuits

more expressive?

more expressive?

how more expressive?

real-world data

theorem II

 $\exists \ p''$ requiring exponentially large squared non-mono circuits...

theorem II

...but compact monotonic circuits...!

what if we use more that one square?

theorem III

 $\exists p'''$ requiring exponentially large squared non-mono circuits...

theorem III

...exponentially large monotonic circuits...

theorem III

...but compact SOS circuits...!

a hierarchy of subtractive mixtures

we can define circuits (and hence mixtures) over the Complex:

$$c^2(\mathbf{x}) = c(\mathbf{x})^{\dagger} c(\mathbf{x}), \quad c(\mathbf{x}) \in \mathbb{C}$$

and then we can note that they can be written as a SOS form

$$c^{2}(\mathbf{x}) = r(\mathbf{x})^{2} + i(\mathbf{x})^{2}, \quad r(\mathbf{x}), i(\mathbf{x}) \in \mathbb{R}$$

complex circuits are SOS (and scale better!)

complex circuits are SOS (and scale better!)

takeaway

"use squared mixtures over complex numbers (and you get a SOS for free)"

takeaway

"use squared mixtures over complex numbers (and you get a SOS for free)"

 \Rightarrow but how to implement them?

compositional inference


```
from cirkit.symbolic.functional import integrate, multiply,

→ conjugate

# create a deep circuit with complex parameters
c = build symbolic complex circuit('quad-tree-4')
# compute the partition function of c^2
def renormalize(c):
   c1 = conjugate(c)
   c2 = multiply(c, c1)
   return integrate(c2)
```


a notebook on learning SOS subtractive mixtures

https://github.com/april-tools/cirkit/blob/main/notebooks/ sum-of-squares-circuits.ipynb

towards conclusions...

oh mixtures, you're so fine you blow my mind!

"if someone publishes a paper on **model A**, there will be a paper about **mixtures of A** soon, with high probability"

A. Vergari

learning & reasoning with circuits in pytorch

github.com/april-tools/cirkit

questions?

structural properties

smoothness

decomposability

compatibility

determinism

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

determinism

the inputs of sum units are defined over disjoint supports

deterministic circuit

non-deterministic circuit