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why tensor factorizations? (1/4)
high-dimensional data as tensors

(PBS Nature) (H. Zunair) (N. M. Short)

Panagakis et al., “Tensor Methods in Computer Vision and Deep Learning”, 2021
Wang et al., “Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A
Comprehensive Review”, 2022 3/147



why tensor factorizations? (2/4)
graphs as tensors
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why tensor factorizations? (3/4)
compress ML models

Compress convolutional layers
[Phan et al. 2020]

Low-rank adapters in LLMs
[Hu et al. 2022] [Bershatsky et al. 2024]
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why tensor factorizations? (4/4)
tensors 4 physics

Fluid velocity vectors computed
in exponentially many points…

…by factorizing them into
chains of low-rank tensors
[Gourianov et al. 2022] [Hölscher et al. 2025]
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why circuits? (1/3)
efficient probabilistic inference

Fast lossless (de)compression
[Liu, Mandt, and Van den Broeck 2022]

Efficient robustness
to adversarial attacks
[Subramani et al. 2021]
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why circuits? (2/3)
they enable neuro-symbolic AI

Constrained multi-label
prediction (w/ guarantees)
[Ahmed et al. 2022]

Constrained text generation
[Zhang et al. 2023]
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why circuits? (3/3)
they are reliable and interpretable

Encode group fairness
[Choi, Dang, and Van den Broeck 2020]

∑
Z
p(Z)p(Y | X,Z)

Tractable causal inference
[Wang and Kwiatkowska 2023]
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outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results
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outline

1 connecting tensor factorizations and circuits
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tl;dr

“Understand when and how
a tensor factorization can be
exactly encoded as a circuit representation”

13/147
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how to evaluate a circuit?
a circuit computes a tensor entry at some index
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The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)

ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij
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The layer-wise circuit definition
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The layer-wise circuit definition
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going deeper: hierarchical Tucker
level-one factorization
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going deeper: hierarchical Tucker
level-one factorization as a circuit
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going deeper: hierarchical Tucker
level-two factorization
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going deeper: hierarchical Tucker
nested factorizations are deep circuits
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going deeper: hierarchical Tucker
nested factorizations are deep circuits
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Tensor networks
the Penrose graphical notation
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Tensor networks
matrix factorization & contraction
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Tensor trains are circuits
also called matrix-product states
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Many tensor factorizations are circuits
CP

RESCAL

Tucker

Hierarchical Tucker

Tensor train

Matrix-product state

Hierarchical Tucker

Tree tensor network

ComplEx
...

“What do we gain from circuits?”
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More input functions with circuits
Input unit functions f(x) compute:

— an entry of matrix (or tensor):
f(x) = vxr (embedding layer)

— probability mass functions:
f(x) = Binomial(x;n, p) (more compact!)

— continuous functions:
f(x) = a0 + a1x+ · · ·+ anx

n

f(x) = Normal(x;µ, σ2)
⇒ infinite-dimensional tensors (or functions)

c(x1, x2, x3)

f1(x1) f2(x1) g1(x2) g2(x2) h1(x3) h2(x3)
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More input functions with circuits
Input unit functions f(x) compute:

— an entry of matrix (or tensor):
f(x) = vxr (embedding layer)

— probability mass functions:
f(x) = Binomial(x;n, p) (more compact!)

— continuous functions:
f(x) = a0 + a1x+ · · ·+ anx

n

f(x) = Normal(x;µ, σ2)
⇒ infinite-dimensional tensors (or functions)

c(x1, x2, x3)

f1(x1) f2(x1) g1(x2) g2(x2) h1(x3) h2(x3)

Townsend and Trefethen, “Continuous analogues of matrix factorizations”, 2015
Novikov, Panov, and Oseledets, “Tensor-train density estimation”, 2021 25/147



Probabilistic circuits (PCs)

PC == a circuit c encoding a non-negative function
∀x ∈ dom(X) : c(x) = c(x1, . . . , xn) ≥ 0

p(x) =
1

Z
c(x),

where Z =
∑

x c(x) (PMF) or Z =
∫
c(x) dx (PDF)

Non-negative sum parameters∧ non-negative input functions
=⇒ a circuit is a PC
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Probabilistic circuits (PCs)

PC == a circuit c encoding a non-negative function
∀x ∈ dom(X) : c(x) = c(x1, . . . , xn) ≥ 0

p(x) =
1

Z
c(x),

where Z =
∑

x c(x) (PMF) or Z =
∫
c(x) dx (PDF)

Non-negative sum parameters∧ non-negative input functions
=⇒ a circuit is a PC
Cichocki and Phan, “Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor
Factorizations”, 2009 26/147



How to parameterize circuits?
(i.e., the weights of sums and input functions)

Functions: neural networks

Deep generative models

Gala et al., “Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits”, 2024
Shao et al., “Conditional sum-product networks: Imposing structure on deep probabilistic
architectures”, 2020
Sidheekh, Kersting, and Natarajan, “Probabilistic Flow Circuits: Towards Unified Deep Models for
Tractable Probabilistic Inference”, 2023 27/147
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Functions: neural networks
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Gala et al., “Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits”, 2024
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architectures”, 2020
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cirkitkit
learning & reasoning with circuits in pytorch

https://github.com/april-tools/cirkit

28/147

https://github.com/april-tools/cirkit


1 from cirkit.symbolic.layers import (
2 EmbeddingLayer, SumLayer, KroneckerLayer,
3 Scope
4 )
5

6 # Tensor shape and rank
7 shape = (3, 1280, 720)
8 rank = 42
9

10 # Construct the Tucker factorization layers
11 v1 = EmbeddingLayer(Scope([0]), rank, num_states=shape[0])
12 v2 = EmbeddingLayer(Scope([1]), rank, num_states=shape[1])
13 v3 = EmbeddingLayer(Scope([2]), rank, num_states=shape[2])
14 kron = KroneckerLayer(rank, arity=3)
15 tucker = SumLayer(rank ** 3, num_output_units=1)
16 29/147

cirkitkit



17

18 # Construct the Tucker circuit
19 circuit = Circuit(
20 layers=[v1, v2, v3, kron, tucker],
21 in_layers={ # The layers input connections
22 kron: [v1, v2, v3],
23 tucker: [kron]
24 },
25 outputs=[tucker]
26 )

30/147



1 # Compile the circuit to PyTorch code
2 from cirkit.pipeline import compile
3 pth_circuit = compile(circuit)
4

5 print(pth_circuit) # Tucker factorization
6 # TorchCircuit(
7 # (0): TorchEmbeddingLayer(...)
8 # (1): TorchEmbeddingLayer(...)
9 # (2): TorchEmbeddingLayer(...)

10 # (3): TorchKroneckerLayer(...)
11 # (4): TorchSumLayer(...)
12 #)
13

14 # Compute one entry of the encoded tensor
15 x = torch.tensor([[1, 500, 300]])
16 t_x = pth_circuit(x) 31/147



1 from cirkit.templates import tensor_factorizations
2

3 shape = (3, 1280, 720)
4

5 # CP factorization
6 circuit = tensor_factorizations.cp(shape, rank=42)
7

8 # Tucker factorization
9 circuit = tensor_factorizations.tucker(shape, rank=42)

10

11 # Tensor-train / matrix-product state
12 circuit = tensor_factorizations.tensor_train(shape, rank=42)

32/147



W3

W1 W2

Stack layers to build a deep factorization!

33/147



W3

W1 W2

Save computation by sharing sub-factorizations!

33/147



1 from cirkit.symbolic.layers import (
2 EmbeddingLayer, SumLayer, KroneckerLayer,
3 HadamardLayer, Scope)
4

5 # Tensor shape and ranks
6 shape = (17, 3, 1280, 720)
7 rank1, rank2 = 2, 4
8

9 # Construct the layers
10 v1 = EmbeddingLayer(Scope([0]), rank1, num_states=shape[0])
11 v2 = EmbeddingLayer(Scope([1]), rank1, num_states=shape[1])
12 v3 = EmbeddingLayer(Scope([2]), rank1, num_states=shape[2])
13 v4 = EmbeddingLayer(Scope([3]), rank1, num_states=shape[3])
14 kron1 = KroneckerLayer(rank1, arity=2)
15 kron2 = KroneckerLayer(rank1, arity=2)
16 hada1 = HadamardLayer(rank1, arity=2) 34/147
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17 hada2 = HadamardLayer(rank1, arity=2)
18 sum1 = SumLayer(rank1, num_output_units=rank1)
19 sum2 = SumLayer(rank1 ** 2, num_output_units=rank1)
20 sum3 = SumLayer(rank1 + rank2, num_output_units=1, arity=2)
21

22 # Construct the "Fankenstein" circuit
23 circuit = Circuit(
24 layers=[v1, v2, v3, v4, kron1, kron2, ...],
25 in_layers={ # The layers input connections
26 hada1: [v1, v2],
27 kron1: [v2, v3],
28 sum1: [hada1],
29 sum2: [kron1],
30 kron2: [sum1, v4],
31 ...

35/147



Takeaways

1 circuits unifymany (deep) tensor factorizations

2 A Lego block approach to tensor factorizations
(different parameterizations)

3 build new tensor factorizations by connecting layers
(easy to do within the cirkit library)
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2 A Lego block approach to tensor factorizations
(different parameterizations)

3 build new tensor factorizations by connecting layers
(easy to do within the cirkit library)

36/147

Questions?



outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

37/147



tl;dr

“Understand when and how
we can build a deep circuit
that is a deep factorization”

38/147



W3

W1 W2

…but do we always get a tensor factorization?

39/147



Multilinear forms
tensor factorizations are typically multilinear

∑
i

αi

d∏
j=1

fi,j(xj)


tx1···xn =

R∑
r=1

d∏
j=1

v(j)xjr
(CP)

tx1···xn =

R1,··· ,Rd∑
r1,··· ,rd=1

wr1···rd

d∏
j=1

v(j)xjrj
(Tucker)

linear in each univariate basis/input function

Vasilescu and Terzopoulos, “Multilinear Image Analysis for Facial Recognition”, 2002
Kolda, Multilinear operators for higher-order decompositions, 2006 40/147



“How to enforce multilinearity in deep circuits?”

41/147



Structural properties

smoothness

decomposability

compatibility

42/147



Structural properties

property A

property B

property C
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Structural properties

smoothness

decomposability

property C

smoothness∧ decomposability
=⇒multilinearity

44/147



Multilinearity in circuits

the inputs of product units are defined over disjoint sets of variables

f1(x1) f2(x1) g1(x2) g2(x2)

3 multilinear

f1(x1) f2(x1) g1(x1) g2(x1)

7 not multilinear

Darwiche and Marquis, “A knowledge compilation map”, 2002 45/147



Multilinearity in circuits

the inputs of product units are defined over disjoint sets of variables

f1(x1) f2(x1) g1(x2) g2(x2)

decomposable circuit

f1(x1) f2(x1) g1(x1) g2(x1)

non-decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 45/147



Multilinearity in circuits

the inputs of sum units are defined over the same variables

f1(x1) f2(x1) g1(x1) g2(x1)

wij

3 multilinear

f1(x1) f2(x1) g1(x2) g2(x2)

wij

7 not multilinear

Darwiche and Marquis, “A knowledge compilation map”, 2002 46/147



Multilinearity in circuits

the inputs of sum units are defined over the same variables

f1(x1) f2(x1) g1(x1) g2(x1)

wij

smooth circuit

f1(x1) f2(x1) g1(x2) g2(x2)

wij

non-smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 46/147



Structural properties

smoothness

decomposability

property C

smoothness∧ decomposability
=⇒multilinearity

47/147



Structural properties

smoothness

decomposability

property C

tractable computation of arbitrary integrals
in probabilistic circuits

p(y) =

∫
p(y, z) dz, ∀Y ⊆ X, Z = X \Y

=⇒ tractable partition function
=⇒ also any conditional is tractable

47/147



tractable marginals on PCs

Peharz et al., “Einsum networks: Fast and scalable learning of tractable probabilistic circuits”, 2020 48/147

Original Missing Conditional sample



Liu, Niepert, and Broeck, “Image Inpainting via Tractable Steering of Diffusion Models”, 2024 49/147



smooth + decomposable circuits = …

compute arbitrary summations (or integrals)
=⇒ linear time in circuit size!

E.g., partition function
∑
x

c(x)

or

∫
c(x) dx in the continuous case

w
(1)
ij

w
(2)
ijk

f1(x1)

f2(x1)

g1(x3)

g2(x3)

h1(x2)

h2(x2)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147



smooth + decomposable circuits = …

If c(x) =
∑
i

wi ci(x)

(smoothness):∫
c(x) dx =

∫ ∑
i

wi ci(x) dx

=
∑
i

wi

∫
ci(x) dx

⇒ integrals are “pushed down” to the inputs

w
(1)
ij

w
(2)
ijk

f1(x1)

f2(x1)

g1(x3)

g2(x3)

h1(x2)

h2(x2)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147



smooth + decomposable circuits = …

If c(x) = c1(y) c2(z)

(decomposability):∫
c(x) dx =

∫ ∫
c1(y) c2(z) dydz

=

(∫
c1(y) dy

)(∫
c2(z) dz

)
⇒ integrals “decompose” into easier ones

w
(1)
ij

w
(2)
ijk

f1(x1)

f2(x1)

g1(x3)

g2(x3)

h1(x2)

h2(x2)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147



smooth + decomposable circuits = …

Integrate simple input functions f(x)
⇒ Gaussians, polynomials, splines, …

w
(1)
ij

w
(2)
ijk

∫
f1(x1) dx1∫
f2(x1) dx1

∫
g1(x3) dx3∫
g2(x3) dx3

∫
h1(x2) dx2∫
h2(x2) dx2 ∫

c(x) dx

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147



“How to build smooth & decomposable circuits?”

“Can we re-use known tensor factorization methods?”

51/147



A zoo of probabilistic circuits…

52/147



Building smooth & decomposable circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a template

W(1) W(2)

2) pick a layer to parameterize
the chosen template
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Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees

X1 X2

X1,X2 X3

X1,X2,X3

Dennis and Ventura, “Learning the architecture of sum-product networks using clustering on
variables”, 2012 54/147
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Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees X1 X2 X3

X1,X2 X2,X3

X1,X2,X3

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 54/147



Circuit sum-product layers as factorizations

W

CP layer

W

Tucker layer

55/147



From region graphs to circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a region graph

W(1) W(2)

2) pick layer and number of units
(e.g., Tucker layer)
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1) choose a region graph

W(1) W(2)

2) pick layer and number of units
(e.g., CP layer)
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Which region graph?
learned or randomized trees

X2 X4

X2,X4 X3X1

X1,X2,X3,X4

Peharz et al., “Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic
Deep Learning”, 2020
Liu and Broeck, “Tractable Regularization of Probabilistic Circuits”, 2021
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Which region graph?
image-tailored graphs

X11 X12 X21 X22

X11X12 X11X21 X21X22 X12X22 X31 X32 X13 X23

X11X12

X21X22

X31X32 X13X23 X33

X11X12X13

X21X22X23

X11X12

X21X22

X31X32

X31X32X33 X13X23X33

X11X12X13

X21X22X23

X31X32X33

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”, 2023
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folding
to speed-up inference

parallelize layers that can be evaluated independently

W(1) W(2)

W

Peharz et al., “Einsum networks: Fast and scalable learning of tractable probabilistic circuits”, 2020 58/147



A unifying circuit construction pipeline

59/147



enrich the pipeline
with new layers

Monarch matrix factorization:
WM = PLLPRR

Monarch circuit layer:
ℓ(x) = WM ℓi(x)

More tensor factorizations
with new layers!

Zhang et al., “Scaling up Probabilistic Circuits via Monarch Transformations”, 2025 60/147



1 # Construct a region graph
2 from cirkit.templates.region_graph import (
3 RandomBinaryTree) # or QuadGraph, LinearTree, ...
4 region_graph = RandomBinaryTree(num_variables=10)
5

6 # Build the circuit from the region graph
7 from cirkit.symbolic.layers import EmbeddingLayer
8 circuit = region_graph.build_circuit(
9 sum_product='tucker', # or 'cp'

10 input_factory=EmbeddingLayer # or GaussianLayer, ...
11 num_sum_units=32,
12 num_input_units=32)
13

14 # Compile the circuit to PyTorch
15 from circkit.pipeline import compile
16 pth_circuit = compile(circuit) 61/147

cirkitkit



Takeaways

1 structural properties for multilinearity

2 exact & efficient (tractable) summations
(more properties & operations next!)

3 a pipeline to build circuits & tensor factorizations
(different layers and graph structures)
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Takeaways

1 structural properties for multilinearity

2 exact & efficient (tractable) summations
(more properties & operations next!)

3 a pipeline to build circuits & tensor factorizations
(different layers and graph structures)

62/147

Questions?



outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

63/147



tl;dr

“Understand when and how
we can build a deep factorization
that guarantees tractable reasoning”

64/147



reasoning about ML models

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the pre-
diction with respect
protected attribute
changes?”

q3
“Can we certify no adver-
sarial examples exist?”

65/147



Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

…in the language of probabilities
66/147



Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

hard to compute in general!
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Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

it is crucial we compute them exactly and in polytime!
68/147



Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposable
69/147



Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposable ??????? ???????
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Which properties for expectations?

smoothness

decomposability

compatibility

Integrals involving two or more functions:
e.g., expectations

E
x∼ p

f(x) =

∫
p(x) f(x) dx

when both p(x) and f(x) are circuits
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Compatibility

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)

Compatibile circuits

Darwiche and Marquis, “A knowledge compilation map”, 2002 72/147



Compatibility

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x2)

h2(x2)

g1(x3)

g2(x3)

non-compatibile circuits

Darwiche and Marquis, “A knowledge compilation map”, 2002 72/147



Structural properties

smoothness

decomposability

compatibility

compatibility
⇓

smoothness∧ decomposability

compatiblity⇒ tractable expectations
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Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

compute E
x∼ p

f (x) =
∫

p(x) f (x) dx inO(| p || f |)
Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 74/147



1 from cirkit.symbolic.circuit import Circuit
2 from cirkit.symbolic.functional import (
3 integrate, multiply)
4

5 # Circuits expectation \int [p(x) f(x)]dx
6 def expectation(p: Circuit, f: Circuit) -> Circuit:
7 i = multiply(p, f)
8 return integrate(i)
9

10 # Squared loss \int [p(x)-q(x)]^2dx = E_p[p] + E_q[q] - 2E_p[q]
11 # = \int p^2(x)dx + \int q^2(x)dx - 2\int p(x)q(x)dx
12 def squared_loss(p: Circuit, q: Circuit) -> Circuit:
13 p2 = multiply(p, p)
14 q2 = multiply(q, q)
15 pq = multiply(p, q)
16 return integrate(p2) + integrate(q2) - 2 * integrate(pq) 75/147

cirkitkit



Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposability compatibility compatibility
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What if compatibility does not apply?

E
e∼pnoise(E)

[
f(x+ e)

]
pnoise a circuit

f not a circuit (e.g., neural net)

How to approximate it by sampling?

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

77/147



wait…!

“How can we sample
from a deep factorization
or tensor network?”
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approximate inference
e.g., via sampling

We can use autoregressive inverse transform sampling:

x1 ∼ p(x1), xi ∼ p(xi|x<i) for i ∈ {2, ..., d}

⇒ can be slow for large dimensions, requires inverting the CDF

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, 2025 79/147
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can we do better?
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approximate inference
e.g., via sampling

We can use autoregressive inverse transform sampling:

x1 ∼ p(x1), xi ∼ p(xi|x<i) for i ∈ {2, ..., d}

⇒ can be slow for large dimensions, requires inverting the CDF

can we do better?
⇒ yes, for non-negative factorizations/monotonic PCs

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, 2025 79/147



How to sample?
non-negative factorizations as latent-variable models

−10 −5 0 5 10
X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1) w1 ≥ 0 w2 ≥ 0

p1(x) p2(x)

p(x)

p(x) = w1 p1(x) + w2 p2(x)
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How to sample?
non-negative factorizations as latent-variable models

−10 −5 0 5 10
X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1) p(z = 0) p(z = 1)

p1(x | z = 0) p2(x | z = 1)

p(x)

p(x) = p(z = 0) p1(x | z = 0)

+ p(z = 1) p2(x | z = 1)
80/147



Structural properties

smoothness

decomposability

compatibility
sampling in a single backward pass

draw x ∼ p(X)
=⇒ exact sampling method

81/147



smooth + decomposable circuits = …

sample variables x1, . . . , xn from p(x)
=⇒ linear time in circuit size!

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147



smooth + decomposable circuits = …

If p(x) =
∑
i

wi pi(x)

(smoothness):
w

(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147



smooth + decomposable circuits = …

If p(x) =
∑
i

p(z = i) pi(x | z = i)

(smoothness):

sample z = i from p(z),
then sample x from pi(x | z = i)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147



smooth + decomposable circuits = …

If p(x) = p1(y) p2(z)

(decomposability):

sample y from p1 and z from p2
(as they are disjoint)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147



smooth + decomposable circuits = …

Sample from simple input distributions:
⇒ easy for Categorical, Gaussian, …

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147



x1

x2

x3

x4

x5

x6

x7

x8

X1 X2 X3 X4 X5

≈
pm(X)

...

q1(m)?

q2(m)?

qk(m)?

generative models that can reason probabilistically

83/147



…but some events are certain!
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When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent Hierarchical Multi-Label Classification Networks”, 2020 85/147



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

nesy structured output prediction (SOP) tasks

Pogančić et al., “Differentiation of Blackbox Combinatorial Solvers”, 2020 86/147



When?

Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!
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Constraint losses

Ground Truth ResNet-18 Semantic Loss

…but cannot guarantee consistency at test time!

Xu et al., “A semantic loss function for deep learning with symbolic knowledge”, 2018 88/147



SPL

Ground Truth ResNet-18 Semantic Loss circuits

you can predict valid paths 100% of the time!
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How?

take an unreliable neural network architecture…
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How?

……and replace the last layer with
a semantic probabilistic layer (SPL)
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SPL

SPL
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SPL

SPL

p(y | x) = qΘ(y | g(z))

qΘ(y | g(z)) is an expressive distribution over labels

92/147



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

cK(x,y) encodes the constraint 1{x,y |= K}
92/147



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

a product of experts : (
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SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

92/147



Goal

Can we design q and c

to be deep factorizations
yet yielding a tractable product?
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Goal

Can we design q and c

to be deep factorizations
yet yielding a tractable product?
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Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 94/147



SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))
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SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

c

and a logical circuit c(y,x) encoding K
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knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}

1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0}

1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147
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knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}
1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

cK(y1, y2, y3)

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147



more tensor factorizations for NeSy at AAAI 2025
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NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”, 2022 99/147



NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a Boolean circuit
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NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a Boolean circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution
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NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a Boolean circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”, 2022 99/147



SPLs
(and more circuits)

everywhere
100/147



constrained text generation with LLMs (ICML 2023)
101/147



reliable reinforcement learning (AAAI 23)
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enforce constraints in knowledge graph embeddings
oral at NeurIPS 2023
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Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposability compatibility compatibility
104/147



wait…!

“Given a reasoning task
can we automatically distill
a tractable algorithm for it?”

105/147



A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries
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A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits!
⇒ re-using intermediate transformations across queries

106/147



XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫



XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫



Tractable operators

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y )

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y )

JX ≥ γK

×

×

supp(p2)

log θ2

smooth, decomposable
deterministic

smooth, decomposable
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XENT(p || q) =
∫
p(x) × log q(x) dX

p

q

log

r

×
s

∫



Tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible
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∫∫∫
p(x) × log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫

build a LEGO-like query calculus… 111/147



…and compositionally derive many more tractable algorithms

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 111/147



Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147



Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147



Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147



Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147

Questions?



outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results

113/147



tl;dr

“Understand when and how
one factorization scheme can be
provably more expressive than others”
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Expressiveness of tensor factorizations

We care about factorization methods that yield compact decompositions
(minimise memory footprint & computation)

“if rank(s) is exponential in d, then it is not useful!”
=⇒ storing T ∈ RM×···×M requiresO(Md)memory

One factorization method may require
exponentially smaller rank than others =⇒ it is more expressive
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Expressiveness of tensor factorizations

We care about factorization methods that yield compact decompositions
(minimise memory footprint & computation)

“if rank(s) is exponential in d, then it is not useful!”
=⇒ storing T ∈ RM×···×M requiresO(Md)memory

One factorization method may require
exponentially smaller rank than others =⇒ it is more expressive

Cohen, Sharir, and Shashua, “On the Expressive Power of Deep Learning: A Tensor Analysis”, 2015 115/147



wait…!

what about circuits?

116/147



Expressiveness of circuits

A rigorous concept in circuit complexity theory

Expressiveness results of circuits based on the circuit size
=⇒ number of edges between units (amount of computation)

Different circuit classes have different expressive power

Valiant, “Negation can be exponentially powerful”, 1979
Darwiche and Marquis, “A knowledge compilation map”, 2002
Martens and Medabalimi, “On the expressive efficiency of sum product networks”, 2014 117/147
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Expressiveness of circuits

A rigorous concept in circuit complexity theory

Expressiveness results of circuits based on the circuit size
=⇒ number of edges between units (amount of computation)

Different circuit classes have different expressive power

Valiant, “Negation can be exponentially powerful”, 1979
Darwiche and Marquis, “A knowledge compilation map”, 2002
Martens and Medabalimi, “On the expressive efficiency of sum product networks”, 2014 117/147



“Circuit complexity theory helps proving
stronger results for tensor factorizations”
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Accepted at ICLR 2024 as a spotlight
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Monotonic probabilistic circuits

Monotonic circuits
p(x) = 1

Z c(x), c(x) ≥ 0
where parameters and input functions are positive

(represent non-negative tensor factorizations [Cichocki and Phan 2009])

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 120/147



Monotonic probabilistic circuits

Monotonic circuits
p(x) = 1

Z c(x), c(x) ≥ 0
where parameters and input functions are positive

(represent non-negative tensor factorizations [Cichocki and Phan 2009])

Cichocki and Phan, “Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor
Factorizations”, 2009 120/147



A limitation of monotonic circuits

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+ • UDISJ
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· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large monotonic circuits…
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Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+

±2

• UDISJ
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Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+

±2

• UDISJ
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Tractable product
thanks to circuit compatibility

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 124/147



Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

w
(1)
j

w
(2)
ij

f1(x1)

f2(x1)

h1(x2)

h2(x2)

g1(x3)

g2(x3)( )
2
= w

(1)
j ·w(1)

k

w
(2)
ij ·w

(2)
kℓ

f
( x

1
)
⊗

f
(x

1
)

h
( x

2
)
⊗
h
(x

2
)

g
( x

3
)
⊗
g
(x
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∃ p requiring exponentially large monotonic circuits…
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…instead squared circuits require polynomial size
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Squared circuitsmore expressive thanmonotonic ones

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 127/147
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“Can monotonic circuits be more expressive than squared?”
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Squared circuits are sparse Born machines

A(1) A(2) A(3)

x1 x2 x3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

p(x1, x2, x3) ∝ ( tx1x2x3 )
2 (Born machine)

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

c(x1, x2, x3)

circuit compatible with itself

Schollwoeck, “The density-matrix renormalization group in the age of matrix product states”, 2010 129/147
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A limitation of Born machines
(with real tensor-train factorization)

Proposition 5 (Glasser et al. 2019)

There exists non-negative tensors over 2d variables
that can be factorized as positive TT of constant rank 2, but
real Born machines have at least rank 2Ω(d).

“Can it be generalized to squared circuits?”

Glasser et al., “Expressive power of tensor-network factorizations for probabilistic modeling”, 2019 130/147
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“Can monotonic circuits be more expressive than squared?”

Yes!
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Accepted at AAAI 2025
Poster #840, Hall E, Thursday February 27,

12:30pm-2:30pm
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Wang and Van den Broeck
“On the Relationship Between Monotone

and Squared Probabilistic Circuits”
(also at AAAI 2025)
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∃ p requiring polysize monotonic circuits…

133/147



... ( )
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…but require exponentially large squared circuits
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Squaring alone can reduce expressiveness!
(generalizes to factorizations other than tensor-trains)
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“How to build circuits more expressive than both?”
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Sum of squares (SOS) circuits
p(x) = 1

Z

∑r
i=1 c

2
i (x), ci(x) ∈ R

where parameters and input functions can be negative

+

±2Σ2

• SUM • UDISJ

• UPS • UTQ
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SOS can surpass both expressiveness limitations!
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Experiments

107 108

1.2

1.3

1.4

BPD MNIST

108 109

5.0

5.2

5.4

5.6

5.8

# parameters

BPD CelebA

+sd

±2
R
±2
C

+sd ·±2
C

Complex squared circuits are SOS (and scale better!)
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Takeaways

1 factorizations and circuits expressiveness results…
bridge rank and circuit size

2 circuits can help proving stronger expressiveness results
e.g., results from Born machines to squared circuits

3 sum of squared circuits are more expressive (use them!)
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Questions?



wait…!

conclusions…?
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takeaway #1: unifying a fragmented literature
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W3

W1 W2

takeaway #2: easily build novel factorizations
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Ground Truth ResNet-18 Semantic Loss circuits

takeaway #3: use them for efficient & reliable
inference
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108 109
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takeaway #4: SOS circuits are provably more
expressive factorizations
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accepted at TMLR featured certification
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cirkitkit
learning & reasoning with circuits in pytorch

https://github.com/april-tools/cirkit
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https://github.com/april-tools/cirkit


workshop at AAAI-25, March 4
april-tools.github.io/colorai/ 146/147

april-tools.github.io/colorai/
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x1

V(2)
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ijk
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a
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a
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questions?
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