
from tensor factorizations
to circuits (and back)

lorenzo loconte antonio vergari
@loreloc @nolovedeeplearning

@loreloc_ @tetraduzione

25th Feb 2025 – AAAI-25 – Philadelphia

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

tensor factorizations

w
(1)
ij

w
(2)
ijk

v
(1)
x11

a
(1)
x12

a
(3)
x31

a
(3)
x32

a
(2)
x21

a
(2)
x22 c(x1, x2, x3)

circuits

2/147

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

tensor factorizations

w
(1)
ij

w
(2)
ijk

v
(1)
x11

a
(1)
x12

a
(3)
x31

a
(3)
x32

a
(2)
x21

a
(2)
x22 c(x1, x2, x3)

circuits

they look quite different…!?
2/147

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

tensor factorizations

w
(1)
ij

w
(2)
ijk

v
(1)
x11

a
(1)
x12

a
(3)
x31

a
(3)
x32

a
(2)
x21

a
(2)
x22 c(x1, x2, x3)

circuits

what can one take from another…!?
2/147

why tensor factorizations? (1/4)
high-dimensional data as tensors

(PBS Nature) (H. Zunair) (N. M. Short)

Panagakis et al., “Tensor Methods in Computer Vision and Deep Learning”, 2021
Wang et al., “Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A
Comprehensive Review”, 2022 3/147

why tensor factorizations? (2/4)
graphs as tensors

interacts

treatstreatstreats

regulates

ibuprofen loxoprofen

COX2

inflammation pain

P-prostacyclin

Entities: •Drugs •Symptoms

•Proteins •Functions

En
tit

ie
s

Predicates Entities

1{s r−→ o}

o

r

s

Knowledge base as Boolean tensor
[Nickel et al. 2016]

4/147

why tensor factorizations? (2/4)
graphs as tensors

interacts

treatstreatstreats

regulates

ibuprofen loxoprofen

COX2

inflammation pain

P-prostacyclin

Entities: •Drugs •Symptoms

•Proteins •Functions

En
tit

ie
s

Predicates Entities

1{s r−→ o}

o

r

s

Knowledge base as Boolean tensor
[Nickel et al. 2016]

4/147

why tensor factorizations? (3/4)
compress ML models

Compress convolutional layers
[Phan et al. 2020]

Low-rank adapters in LLMs
[Hu et al. 2022] [Bershatsky et al. 2024]

5/147

why tensor factorizations? (3/4)
compress ML models

Compress convolutional layers
[Phan et al. 2020]

Low-rank adapters in LLMs
[Hu et al. 2022] [Bershatsky et al. 2024]

5/147

why tensor factorizations? (4/4)
tensors 4 physics

Fluid velocity vectors computed
in exponentially many points…

…by factorizing them into
chains of low-rank tensors
[Gourianov et al. 2022] [Hölscher et al. 2025]

6/147

why tensor factorizations? (4/4)
tensors 4 physics

Fluid velocity vectors computed
in exponentially many points…

…by factorizing them into
chains of low-rank tensors
[Gourianov et al. 2022] [Hölscher et al. 2025]

6/147

why circuits? (1/3)
efficient probabilistic inference

Fast lossless (de)compression
[Liu, Mandt, and Van den Broeck 2022]

Efficient robustness
to adversarial attacks
[Subramani et al. 2021]

7/147

why circuits? (1/3)
efficient probabilistic inference

Fast lossless (de)compression
[Liu, Mandt, and Van den Broeck 2022]

Efficient robustness
to adversarial attacks
[Subramani et al. 2021]

7/147

why circuits? (2/3)
they enable neuro-symbolic AI

Constrained multi-label
prediction (w/ guarantees)
[Ahmed et al. 2022]

Constrained text generation
[Zhang et al. 2023]

8/147

why circuits? (2/3)
they enable neuro-symbolic AI

Constrained multi-label
prediction (w/ guarantees)
[Ahmed et al. 2022] Constrained text generation

[Zhang et al. 2023]
8/147

why circuits? (3/3)
they are reliable and interpretable

Encode group fairness
[Choi, Dang, and Van den Broeck 2020]

∑
Z
p(Z)p(Y | X,Z)

Tractable causal inference
[Wang and Kwiatkowska 2023]

9/147

why circuits? (3/3)
they are reliable and interpretable

Encode group fairness
[Choi, Dang, and Van den Broeck 2020]

∑
Z
p(Z)p(Y | X,Z)

Tractable causal inference
[Wang and Kwiatkowska 2023]

9/147

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

tensor factorizations

tensor compression, graph data
physics-inspired AI, speed up LLMs…

w
(1)
ij

w
(2)
ijk

v
(1)
x11

a
(1)
x12

a
(3)
x31

a
(3)
x32

a
(2)
x21

a
(2)
x22 c(x1, x2, x3)

circuits

property-driven fast inference
neuro-symbolic, trustworthy AI… 10/147

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

tensor factorizations

w
(1)
ij

w
(2)
ijk

v
(1)
x11

a
(1)
x12

a
(3)
x31

a
(3)
x32

a
(2)
x21

a
(2)
x22 c(x1, x2, x3)

circuits

two faces of the same coin…!
10/147

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results

11/147

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results

11/147

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results

11/147

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results

11/147

outline

1 connecting tensor factorizations and circuits

12/147

tl;dr

“Understand when and how
a tensor factorization can be
exactly encoded as a circuit representation”

13/147

Canonical polyadic (CP)

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

(N. M. Short) 14/147

Canonical polyadic (CP)

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R∑

r=1

v(1)x1r
v(2)x2r

v(3)x3r

V(1) ∈ RI1×R,V(2) ∈ RI2×R,V(3) ∈ RI3×R

14/147

Canonical polyadic (CP)

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R∑

r=1

v(1)x1r
v(2)x2r

v(3)x3r

V(1) ∈ RI1×R,V(2) ∈ RI2×R,V(3) ∈ RI3×R

14/147

Canonical polyadic (CP)

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3 c(x1, x2, x3)

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R∑

r=1

v(1)x1r
v(2)x2r

v(3)x3r

V(1) ∈ RI1×R,V(2) ∈ RI2×R,V(3) ∈ RI3×R

14/147

how to evaluate a circuit?
a circuit computes a tensor entry at some index

V(1) =

 0.1 1.2
3.5 −0.2
−0.1 0.2


V(2) =

 2.5 0.0
−3.4 −0.5
−0.1 2.2


V(3) =

−2.3 1.0
0.8 −2.4
0.7 1.5

 v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈ c(x1, x2, x3) =
R∑

r=1

v(1)x1r
v(2)x2r

v(3)x3r

15/147

how to evaluate a circuit?
a circuit computes a tensor entry at some index

V(1) =

 0.1 1.2

3.5 −0.2
−0.1 0.2


V(2) =

 2.5 0.0

− 3.4 − 0.5

−0.1 2.2


V(3) =

−2.3 1.0

0.8 − 2.4

0.7 1.5



0.1 1.2 -3.4 -0.5 0.8 -2.4

x1 = 1 x2 = 2 x3 = 2

t122 ≈ c(1, 2, 2) =
R∑

r=1

v
(1)
1r v

(2)
2r v

(3)
2r

15/147

how to evaluate a circuit?
a circuit computes a tensor entry at some index

V(1) =

 0.1 1.2

3.5 −0.2
−0.1 0.2


V(2) =

 2.5 0.0

− 3.4 − 0.5

−0.1 2.2


V(3) =

−2.3 1.0

0.8 − 2.4

0.7 1.5



0.1 1.2 -3.4 -0.5 0.8 -2.4

x1 = 1 x2 = 2 x3 = 2

-.27 1.4

t122 ≈ c(1, 2, 2) =
R∑

r=1

v
(1)
1r v

(2)
2r v

(3)
2r

15/147

how to evaluate a circuit?
a circuit computes a tensor entry at some index

V(1) =

 0.1 1.2

3.5 −0.2
−0.1 0.2


V(2) =

 2.5 0.0

− 3.4 − 0.5

−0.1 2.2


V(3) =

−2.3 1.0

0.8 − 2.4

0.7 1.5



0.1 1.2 -3.4 -0.5 0.8 -2.4

x1 = 1 x2 = 2 x3 = 2

-.27 1.4

1.17

t122 ≈ c(1, 2, 2) =
R∑

r=1

v
(1)
1r v

(2)
2r v

(3)
2r

15/147

Tucker

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

W

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R1∑

r1=1

R2∑
r1=1

R3∑
r1=1

wr1r2r3 v(1)x1r1
v(2)x2r2

v(3)x3r3

W ∈ RR1×R2×R3

16/147

Tucker

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

W

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R1∑

r1=1

R2∑
r1=1

R3∑
r1=1

wr1r2r3 v(1)x1r1
v(2)x2r2

v(3)x3r3

W ∈ RR1×R2×R3

16/147

Tucker

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

W

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R1∑

r1=1

R2∑
r1=1

R3∑
r1=1

wr1r2r3 v(1)x1r1
v(2)x2r2

v(3)x3r3

W ∈ RR1×R2×R3

16/147

Tucker

T

x1

x2

x3

≈

V(1)

x1

V(2)

x2

V(3)
x3

W

c(x1, x2, x3)
wijk

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

tx1x2x3 ≈
R1∑

r1=1

R2∑
r1=1

R3∑
r1=1

wr1r2r3 v(1)x1r1
v(2)x2r2

v(3)x3r3

W ∈ RR1×R2×R3

16/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)

ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)

ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)

ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)

ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)
ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)
ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)
ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)
ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of a layer is a layer
ℓ(x) = Wℓi(x)

W

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)
ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of two layers is a layer
ℓ(x) = Wconcat(ℓi(x), ℓii(x))

wij

17/147

The layer-wise circuit definition
A collection of input units is a circuit layer ℓ(x) ∈ RK

The product of two layers is a layer
ℓ(x) = ℓi(x)⊙ ℓii(x) (Hadamard)
ℓ(x) = ℓi(x)⊗ ℓii(x) (Kronecker)

A linear projection of two layers is a layer
ℓ(x) = Wconcat(ℓi(x), ℓii(x))

W

17/147

The layer-wise circuit definition

c(x1, x2, x3)

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

CP circuit

1

v
(1)
x1 v

(2)
x2 v

(3)
x3

CP circuit

18/147

The layer-wise circuit definition

c(x1, x2, x3)

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

CP circuit

1

v
(1)
x1 v

(2)
x2 v

(3)
x3

CP circuit

18/147

The layer-wise circuit definition

c(x1, x2, x3)
wijk

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

Tucker circuit

W

v
(1)
x1 v

(2)
x2 v

(3)
x3

Tucker circuit

19/147

The layer-wise circuit definition

c(x1, x2, x3)
wijk

v
(1)
x11

v
(1)
x12

v
(2)
x21

v
(2)
x22

v
(3)
x31

v
(3)
x32

Tucker circuit

W

v
(1)
x1 v

(2)
x2 v

(3)
x3

Tucker circuit

19/147

going deeper: hierarchical Tucker
level-one factorization

T

x1

x2

x3

=⇒

T

(x1, x2)

x3

≈

U

(x1, x2)
V(3)

x3

W(1)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
level-one factorization

T

x1

x2

x3

=⇒

T

(x1, x2)

x3

≈

U

(x1, x2)
V(3)

x3

W(1)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
level-one factorization as a circuit

U

(x1, x2)
V(3)

x3

W(1)

w
(1)
jk

u(x1x2)1

u(x1x2)2

v
(3)
x31

v
(3)
x32

c(x1, x2, x3)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
level-one factorization as a circuit

U

(x1, x2)
V(3)

x3

W(1)

w
(1)
jk

u(x1x2)1

u(x1x2)2

v
(3)
x31

v
(3)
x32

c(x1, x2, x3)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
level-two factorization

U

(x1, x2)

r

=⇒
U

x1

x2

r

≈
V(1)

x1

V(2)

x2

r

W (2)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
level-two factorization

U

(x1, x2)

r

=⇒
U

x1

x2

r

≈
V(1)

x1

V(2)

x2

r

W (2)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
nested factorizations are deep circuits

U

(x1, x2)
V(3)

x3

W(1)

w
(1)
jk

u(x1x2)1

u(x1x2)2

v
(3)
x31

v
(3)
x32

c(x1, x2, x3)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

going deeper: hierarchical Tucker
nested factorizations are deep circuits

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

w
(1)
rj

w
(2)
rjk

v
(1)
x11

v
(1)
x12

v
(3)
x31

v
(3)
x32

v
(2)
x21

v
(2)
x22 c(x1, x2, x3)

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 20/147

Tensor networks
the Penrose graphical notation

a

scalar

a

i

vector

A

i j

matrix
A

i

j

k

tensor

Biamonte and Bergholm, “Tensor Networks in a Nutshell”, 2017 21/147

Tensor networks
matrix factorization & contraction

A

i j

A ∈ RN×R

B

j k

B ∈ RR×M

A B

i k

j

C = AB ∈ RN×M

cik =
R∑

j=1

aij bjk

=
C

i k

C ∈ RN×M

Biamonte and Bergholm, “Tensor Networks in a Nutshell”, 2017
Orús, “A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled
Pair States”, 2013 22/147

Tensor networks
matrix factorization & contraction

A

i j

A ∈ RN×R

B

j k

B ∈ RR×M

A B

i k

j

C = AB ∈ RN×M

cik =
R∑

j=1

aij bjk

=
C

i k

C ∈ RN×M

Biamonte and Bergholm, “Tensor Networks in a Nutshell”, 2017
Orús, “A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled
Pair States”, 2013 22/147

Tensor trains are circuits
also called matrix-product states

A(1) A(2) A(3)

x1 x2 x3

T ∈ RI1×I2×I3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

23/147

Tensor trains are circuits
also called matrix-product states

a
(1)
x1

A(2)
x2 a

(3)
x3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

23/147

Tensor trains are circuits
also called matrix-product states

a
(1)
x1

A(2)
x2 a

(3)
x3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32 23/147

Tensor trains are circuits
also called matrix-product states

a
(1)
x1

A(2)
x2 a

(3)
x3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32 23/147

Tensor trains are circuits
also called matrix-product states

ux1x2 a
(3)
x3

tx1x2x3 =
R∑

r2=1

ux1x2r2 a(3)r2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32 23/147

Tensor trains are circuits
also called matrix-product states

ux1x2 a
(3)
x3

tx1x2x3 =
R∑

r2=1

ux1x2r2 a(3)r2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

c(x1, x2, x3)

23/147

Tensor trains are circuits
also called matrix-product states

tx1x2x3

tx1x2x3

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

c(x1, x2, x3)

23/147

Many tensor factorizations are circuits
CP

RESCAL

Tucker

Hierarchical Tucker

Tensor train

Matrix-product state

Hierarchical Tucker

Tree tensor network

ComplEx
...

“What do we gain from circuits?”

24/147

More input functions with circuits
Input unit functions f(x) compute:

— an entry of matrix (or tensor):
f(x) = vxr (embedding layer)

— probability mass functions:
f(x) = Binomial(x;n, p) (more compact!)

— continuous functions:
f(x) = a0 + a1x+ · · ·+ anx

n

f(x) = Normal(x;µ, σ2)
⇒ infinite-dimensional tensors (or functions)

c(x1, x2, x3)

f1(x1) f2(x1) g1(x2) g2(x2) h1(x3) h2(x3)

25/147

More input functions with circuits
Input unit functions f(x) compute:

— an entry of matrix (or tensor):
f(x) = vxr (embedding layer)

— probability mass functions:
f(x) = Binomial(x;n, p) (more compact!)

— continuous functions:
f(x) = a0 + a1x+ · · ·+ anx

n

f(x) = Normal(x;µ, σ2)
⇒ infinite-dimensional tensors (or functions)

c(x1, x2, x3)

f1(x1) f2(x1) g1(x2) g2(x2) h1(x3) h2(x3)

25/147

More input functions with circuits
Input unit functions f(x) compute:

— an entry of matrix (or tensor):
f(x) = vxr (embedding layer)

— probability mass functions:
f(x) = Binomial(x;n, p) (more compact!)

— continuous functions:
f(x) = a0 + a1x+ · · ·+ anx

n

f(x) = Normal(x;µ, σ2)
⇒ infinite-dimensional tensors (or functions)

c(x1, x2, x3)

f1(x1) f2(x1) g1(x2) g2(x2) h1(x3) h2(x3)

Townsend and Trefethen, “Continuous analogues of matrix factorizations”, 2015
Novikov, Panov, and Oseledets, “Tensor-train density estimation”, 2021 25/147

Probabilistic circuits (PCs)

PC == a circuit c encoding a non-negative function
∀x ∈ dom(X) : c(x) = c(x1, . . . , xn) ≥ 0

p(x) =
1

Z
c(x),

where Z =
∑

x c(x) (PMF) or Z =
∫
c(x) dx (PDF)

Non-negative sum parameters∧ non-negative input functions
=⇒ a circuit is a PC

26/147

Probabilistic circuits (PCs)

PC == a circuit c encoding a non-negative function
∀x ∈ dom(X) : c(x) = c(x1, . . . , xn) ≥ 0

p(x) =
1

Z
c(x),

where Z =
∑

x c(x) (PMF) or Z =
∫
c(x) dx (PDF)

Non-negative sum parameters∧ non-negative input functions
=⇒ a circuit is a PC

26/147

Probabilistic circuits (PCs)

PC == a circuit c encoding a non-negative function
∀x ∈ dom(X) : c(x) = c(x1, . . . , xn) ≥ 0

p(x) =
1

Z
c(x),

where Z =
∑

x c(x) (PMF) or Z =
∫
c(x) dx (PDF)

Non-negative sum parameters∧ non-negative input functions
=⇒ a circuit is a PC
Cichocki and Phan, “Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor
Factorizations”, 2009 26/147

How to parameterize circuits?
(i.e., the weights of sums and input functions)

Functions: neural networks

Deep generative models

Gala et al., “Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits”, 2024
Shao et al., “Conditional sum-product networks: Imposing structure on deep probabilistic
architectures”, 2020
Sidheekh, Kersting, and Natarajan, “Probabilistic Flow Circuits: Towards Unified Deep Models for
Tractable Probabilistic Inference”, 2023 27/147

How to parameterize circuits?
(i.e., the weights of sums and input functions)

Functions: neural networks
Deep generative models

Gala et al., “Scaling Continuous Latent Variable Models as Probabilistic Integral Circuits”, 2024
Shao et al., “Conditional sum-product networks: Imposing structure on deep probabilistic
architectures”, 2020
Sidheekh, Kersting, and Natarajan, “Probabilistic Flow Circuits: Towards Unified Deep Models for
Tractable Probabilistic Inference”, 2023 27/147

cirkitkit
learning & reasoning with circuits in pytorch

https://github.com/april-tools/cirkit

28/147

https://github.com/april-tools/cirkit

1 from cirkit.symbolic.layers import (
2 EmbeddingLayer, SumLayer, KroneckerLayer,
3 Scope
4)
5

6 # Tensor shape and rank
7 shape = (3, 1280, 720)
8 rank = 42
9

10 # Construct the Tucker factorization layers
11 v1 = EmbeddingLayer(Scope([0]), rank, num_states=shape[0])
12 v2 = EmbeddingLayer(Scope([1]), rank, num_states=shape[1])
13 v3 = EmbeddingLayer(Scope([2]), rank, num_states=shape[2])
14 kron = KroneckerLayer(rank, arity=3)
15 tucker = SumLayer(rank ** 3, num_output_units=1)
16 29/147

cirkitkit

17

18 # Construct the Tucker circuit
19 circuit = Circuit(
20 layers=[v1, v2, v3, kron, tucker],
21 in_layers={ # The layers input connections
22 kron: [v1, v2, v3],
23 tucker: [kron]
24 },
25 outputs=[tucker]
26)

30/147

1 # Compile the circuit to PyTorch code
2 from cirkit.pipeline import compile
3 pth_circuit = compile(circuit)
4

5 print(pth_circuit) # Tucker factorization
6 # TorchCircuit(
7 # (0): TorchEmbeddingLayer(...)
8 # (1): TorchEmbeddingLayer(...)
9 # (2): TorchEmbeddingLayer(...)

10 # (3): TorchKroneckerLayer(...)
11 # (4): TorchSumLayer(...)
12 #)
13

14 # Compute one entry of the encoded tensor
15 x = torch.tensor([[1, 500, 300]])
16 t_x = pth_circuit(x) 31/147

1 from cirkit.templates import tensor_factorizations
2

3 shape = (3, 1280, 720)
4

5 # CP factorization
6 circuit = tensor_factorizations.cp(shape, rank=42)
7

8 # Tucker factorization
9 circuit = tensor_factorizations.tucker(shape, rank=42)

10

11 # Tensor-train / matrix-product state
12 circuit = tensor_factorizations.tensor_train(shape, rank=42)

32/147

W3

W1 W2

Stack layers to build a deep factorization!

33/147

W3

W1 W2

Save computation by sharing sub-factorizations!

33/147

1 from cirkit.symbolic.layers import (
2 EmbeddingLayer, SumLayer, KroneckerLayer,
3 HadamardLayer, Scope)
4

5 # Tensor shape and ranks
6 shape = (17, 3, 1280, 720)
7 rank1, rank2 = 2, 4
8

9 # Construct the layers
10 v1 = EmbeddingLayer(Scope([0]), rank1, num_states=shape[0])
11 v2 = EmbeddingLayer(Scope([1]), rank1, num_states=shape[1])
12 v3 = EmbeddingLayer(Scope([2]), rank1, num_states=shape[2])
13 v4 = EmbeddingLayer(Scope([3]), rank1, num_states=shape[3])
14 kron1 = KroneckerLayer(rank1, arity=2)
15 kron2 = KroneckerLayer(rank1, arity=2)
16 hada1 = HadamardLayer(rank1, arity=2) 34/147

cirkitkit

17 hada2 = HadamardLayer(rank1, arity=2)
18 sum1 = SumLayer(rank1, num_output_units=rank1)
19 sum2 = SumLayer(rank1 ** 2, num_output_units=rank1)
20 sum3 = SumLayer(rank1 + rank2, num_output_units=1, arity=2)
21

22 # Construct the "Fankenstein" circuit
23 circuit = Circuit(
24 layers=[v1, v2, v3, v4, kron1, kron2, ...],
25 in_layers={ # The layers input connections
26 hada1: [v1, v2],
27 kron1: [v2, v3],
28 sum1: [hada1],
29 sum2: [kron1],
30 kron2: [sum1, v4],
31 ...

35/147

Takeaways

1 circuits unifymany (deep) tensor factorizations

2 A Lego block approach to tensor factorizations
(different parameterizations)

3 build new tensor factorizations by connecting layers
(easy to do within the cirkit library)

36/147

Takeaways

1 circuits unifymany (deep) tensor factorizations

2 A Lego block approach to tensor factorizations
(different parameterizations)

3 build new tensor factorizations by connecting layers
(easy to do within the cirkit library)

36/147

Takeaways

1 circuits unifymany (deep) tensor factorizations

2 A Lego block approach to tensor factorizations
(different parameterizations)

3 build new tensor factorizations by connecting layers
(easy to do within the cirkit library)

36/147

Takeaways

1 circuits unifymany (deep) tensor factorizations

2 A Lego block approach to tensor factorizations
(different parameterizations)

3 build new tensor factorizations by connecting layers
(easy to do within the cirkit library)

36/147

Questions?

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

37/147

tl;dr

“Understand when and how
we can build a deep circuit
that is a deep factorization”

38/147

W3

W1 W2

…but do we always get a tensor factorization?

39/147

Multilinear forms
tensor factorizations are typically multilinear

∑
i

αi

d∏
j=1

fi,j(xj)


tx1···xn =

R∑
r=1

d∏
j=1

v(j)xjr
(CP)

tx1···xn =

R1,··· ,Rd∑
r1,··· ,rd=1

wr1···rd

d∏
j=1

v(j)xjrj
(Tucker)

linear in each univariate basis/input function

Vasilescu and Terzopoulos, “Multilinear Image Analysis for Facial Recognition”, 2002
Kolda, Multilinear operators for higher-order decompositions, 2006 40/147

“How to enforce multilinearity in deep circuits?”

41/147

Structural properties

smoothness

decomposability

compatibility

42/147

Structural properties

property A

property B

property C

43/147

Structural properties

smoothness

decomposability

property C

smoothness∧ decomposability
=⇒multilinearity

44/147

Multilinearity in circuits

the inputs of product units are defined over disjoint sets of variables

f1(x1) f2(x1) g1(x2) g2(x2)

3 multilinear

f1(x1) f2(x1) g1(x1) g2(x1)

7 not multilinear

Darwiche and Marquis, “A knowledge compilation map”, 2002 45/147

Multilinearity in circuits

the inputs of product units are defined over disjoint sets of variables

f1(x1) f2(x1) g1(x2) g2(x2)

decomposable circuit

f1(x1) f2(x1) g1(x1) g2(x1)

non-decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 45/147

Multilinearity in circuits

the inputs of sum units are defined over the same variables

f1(x1) f2(x1) g1(x1) g2(x1)

wij

3 multilinear

f1(x1) f2(x1) g1(x2) g2(x2)

wij

7 not multilinear

Darwiche and Marquis, “A knowledge compilation map”, 2002 46/147

Multilinearity in circuits

the inputs of sum units are defined over the same variables

f1(x1) f2(x1) g1(x1) g2(x1)

wij

smooth circuit

f1(x1) f2(x1) g1(x2) g2(x2)

wij

non-smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 46/147

Structural properties

smoothness

decomposability

property C

smoothness∧ decomposability
=⇒multilinearity

47/147

Structural properties

smoothness

decomposability

property C

tractable computation of arbitrary integrals
in probabilistic circuits

p(y) =

∫
p(y, z) dz, ∀Y ⊆ X, Z = X \Y

=⇒ tractable partition function
=⇒ also any conditional is tractable

47/147

tractable marginals on PCs

Peharz et al., “Einsum networks: Fast and scalable learning of tractable probabilistic circuits”, 2020 48/147

Original Missing Conditional sample

Liu, Niepert, and Broeck, “Image Inpainting via Tractable Steering of Diffusion Models”, 2024 49/147

smooth + decomposable circuits = …

compute arbitrary summations (or integrals)
=⇒ linear time in circuit size!

E.g., partition function
∑
x

c(x)

or

∫
c(x) dx in the continuous case

w
(1)
ij

w
(2)
ijk

f1(x1)

f2(x1)

g1(x3)

g2(x3)

h1(x2)

h2(x2)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147

smooth + decomposable circuits = …

If c(x) =
∑
i

wi ci(x)

(smoothness):∫
c(x) dx =

∫ ∑
i

wi ci(x) dx

=
∑
i

wi

∫
ci(x) dx

⇒ integrals are “pushed down” to the inputs

w
(1)
ij

w
(2)
ijk

f1(x1)

f2(x1)

g1(x3)

g2(x3)

h1(x2)

h2(x2)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147

smooth + decomposable circuits = …

If c(x) = c1(y) c2(z)

(decomposability):∫
c(x) dx =

∫ ∫
c1(y) c2(z) dydz

=

(∫
c1(y) dy

)(∫
c2(z) dz

)
⇒ integrals “decompose” into easier ones

w
(1)
ij

w
(2)
ijk

f1(x1)

f2(x1)

g1(x3)

g2(x3)

h1(x2)

h2(x2)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147

smooth + decomposable circuits = …

Integrate simple input functions f(x)
⇒ Gaussians, polynomials, splines, …

w
(1)
ij

w
(2)
ijk

∫
f1(x1) dx1∫
f2(x1) dx1

∫
g1(x3) dx3∫
g2(x3) dx3

∫
h1(x2) dx2∫
h2(x2) dx2 ∫

c(x) dx

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 50/147

“How to build smooth & decomposable circuits?”

“Can we re-use known tensor factorization methods?”

51/147

A zoo of probabilistic circuits…

52/147

Building smooth & decomposable circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a template

W(1) W(2)

2) pick a layer to parameterize
the chosen template

53/147

Building smooth & decomposable circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a template

W(1) W(2)

2) pick a layer to parameterize
the chosen template

53/147

Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees

X1 X2

X1,X2 X3

X1,X2,X3

Dennis and Ventura, “Learning the architecture of sum-product networks using clustering on
variables”, 2012 54/147

Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees

X1 X2

X1,X2 X3

X1,X2,X3

Dennis and Ventura, “Learning the architecture of sum-product networks using clustering on
variables”, 2012 54/147

Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees

X1 X2

X1,X2 X3

X1,X2,X3

Dennis and Ventura, “Learning the architecture of sum-product networks using clustering on
variables”, 2012 54/147

Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees

X1 X2

X1,X2 X3

X1,X2,X3

Dennis and Ventura, “Learning the architecture of sum-product networks using clustering on
variables”, 2012 54/147

Region graphs

A bipartite graph to build smooth and
decomposable circuits:

Region node:
set of variables (or dimensions)

Partition node:
decomposition of a region

=⇒ generalizes mode cluster trees X1 X2 X3

X1,X2 X2,X3

X1,X2,X3

Grasedyck, “Hierarchical singular value decomposition of tensors”, 2010 54/147

Circuit sum-product layers as factorizations

W

CP layer

W

Tucker layer

55/147

From region graphs to circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a region graph

W(1) W(2)

2) pick layer and number of units
(e.g., Tucker layer)

56/147

From region graphs to circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a region graph

W(1) W(2)

2) pick layer and number of units
(e.g., Tucker layer)

56/147

From region graphs to circuits

X1 X2 X3

X1,X2 X2,X3

1) choose a region graph

W(1) W(2)

2) pick layer and number of units
(e.g., CP layer)

56/147

Which region graph?
learned or randomized trees

X2 X4

X2,X4 X3X1

X1,X2,X3,X4

Peharz et al., “Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic
Deep Learning”, 2020
Liu and Broeck, “Tractable Regularization of Probabilistic Circuits”, 2021

57/147

Which region graph?
image-tailored graphs

X11 X12 X21 X22

X11X12 X11X21 X21X22 X12X22 X31 X32 X13 X23

X11X12

X21X22

X31X32 X13X23 X33

X11X12X13

X21X22X23

X11X12

X21X22

X31X32

X31X32X33 X13X23X33

X11X12X13

X21X22X23

X31X32X33

Mari, Vessio, and Vergari, “Unifying and Understanding Overparameterized Circuit
Representations via Low-Rank Tensor Decompositions”, 2023

57/147

folding
to speed-up inference

parallelize layers that can be evaluated independently

W(1) W(2)

W

Peharz et al., “Einsum networks: Fast and scalable learning of tractable probabilistic circuits”, 2020 58/147

A unifying circuit construction pipeline

59/147

enrich the pipeline
with new layers

Monarch matrix factorization:
WM = PLLPRR

Monarch circuit layer:
ℓ(x) = WM ℓi(x)

More tensor factorizations
with new layers!

Zhang et al., “Scaling up Probabilistic Circuits via Monarch Transformations”, 2025 60/147

1 # Construct a region graph
2 from cirkit.templates.region_graph import (
3 RandomBinaryTree) # or QuadGraph, LinearTree, ...
4 region_graph = RandomBinaryTree(num_variables=10)
5

6 # Build the circuit from the region graph
7 from cirkit.symbolic.layers import EmbeddingLayer
8 circuit = region_graph.build_circuit(
9 sum_product='tucker', # or 'cp'

10 input_factory=EmbeddingLayer # or GaussianLayer, ...
11 num_sum_units=32,
12 num_input_units=32)
13

14 # Compile the circuit to PyTorch
15 from circkit.pipeline import compile
16 pth_circuit = compile(circuit) 61/147

cirkitkit

Takeaways

1 structural properties for multilinearity

2 exact & efficient (tractable) summations
(more properties & operations next!)

3 a pipeline to build circuits & tensor factorizations
(different layers and graph structures)

62/147

Takeaways

1 structural properties for multilinearity

2 exact & efficient (tractable) summations
(more properties & operations next!)

3 a pipeline to build circuits & tensor factorizations
(different layers and graph structures)

62/147

Takeaways

1 structural properties for multilinearity

2 exact & efficient (tractable) summations
(more properties & operations next!)

3 a pipeline to build circuits & tensor factorizations
(different layers and graph structures)

62/147

Takeaways

1 structural properties for multilinearity

2 exact & efficient (tractable) summations
(more properties & operations next!)

3 a pipeline to build circuits & tensor factorizations
(different layers and graph structures)

62/147

Questions?

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

63/147

tl;dr

“Understand when and how
we can build a deep factorization
that guarantees tractable reasoning”

64/147

reasoning about ML models

q1

“What is the probability of a
treatment for a patient with
unavailable records?”

q2

“How fair is the pre-
diction with respect
protected attribute
changes?”

q3
“Can we certify no adver-
sarial examples exist?”

65/147

Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

…in the language of probabilities
66/147

Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

hard to compute in general!
67/147

Reasoning about ML models

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

it is crucial we compute them exactly and in polytime!
68/147

Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposable
69/147

Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposable ??????? ???????
70/147

Which properties for expectations?

smoothness

decomposability

compatibility

Integrals involving two or more functions:
e.g., expectations

E
x∼ p

f(x) =

∫
p(x) f(x) dx

when both p(x) and f(x) are circuits

71/147

Compatibility

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)

Compatibile circuits

Darwiche and Marquis, “A knowledge compilation map”, 2002 72/147

Compatibility

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x2)

h2(x2)

g1(x3)

g2(x3)

non-compatibile circuits

Darwiche and Marquis, “A knowledge compilation map”, 2002 72/147

Structural properties

smoothness

decomposability

compatibility

compatibility
⇓

smoothness∧ decomposability

compatiblity⇒ tractable expectations

73/147

Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

compute E
x∼ p

f (x) =
∫

p(x) f (x) dx inO(| p || f |)
Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 74/147

1 from cirkit.symbolic.circuit import Circuit
2 from cirkit.symbolic.functional import (
3 integrate, multiply)
4

5 # Circuits expectation \int [p(x) f(x)]dx
6 def expectation(p: Circuit, f: Circuit) -> Circuit:
7 i = multiply(p, f)
8 return integrate(i)
9

10 # Squared loss \int [p(x)-q(x)]^2dx = E_p[p] + E_q[q] - 2E_p[q]
11 # = \int p^2(x)dx + \int q^2(x)dx - 2\int p(x)q(x)dx
12 def squared_loss(p: Circuit, q: Circuit) -> Circuit:
13 p2 = multiply(p, p)
14 q2 = multiply(q, q)
15 pq = multiply(p, q)
16 return integrate(p2) + integrate(q2) - 2 * integrate(pq) 75/147

cirkitkit

Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposability compatibility compatibility
76/147

What if compatibility does not apply?

E
e∼pnoise(E)

[
f(x+ e)

]
pnoise a circuit

f not a circuit (e.g., neural net)

How to approximate it by sampling?

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

77/147

wait…!

“How can we sample
from a deep factorization
or tensor network?”

78/147

approximate inference
e.g., via sampling

We can use autoregressive inverse transform sampling:

x1 ∼ p(x1), xi ∼ p(xi|x<i) for i ∈ {2, ..., d}

⇒ can be slow for large dimensions, requires inverting the CDF

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, 2025 79/147

approximate inference
e.g., via sampling

We can use autoregressive inverse transform sampling:

x1 ∼ p(x1), xi ∼ p(xi|x<i) for i ∈ {2, ..., d}

⇒ can be slow for large dimensions, requires inverting the CDF

can we do better?

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, 2025 79/147

approximate inference
e.g., via sampling

We can use autoregressive inverse transform sampling:

x1 ∼ p(x1), xi ∼ p(xi|x<i) for i ∈ {2, ..., d}

⇒ can be slow for large dimensions, requires inverting the CDF

can we do better?
⇒ yes, for non-negative factorizations/monotonic PCs

Loconte et al., “What is the Relationship between Tensor Factorizations and Circuits (and How Can
We Exploit it)?”, 2025 79/147

How to sample?
non-negative factorizations as latent-variable models

−10 −5 0 5 10
X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1) w1 ≥ 0 w2 ≥ 0

p1(x) p2(x)

p(x)

p(x) = w1 p1(x) + w2 p2(x)

80/147

How to sample?
non-negative factorizations as latent-variable models

−10 −5 0 5 10
X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1) p(z = 0) p(z = 1)

p1(x | z = 0) p2(x | z = 1)

p(x)

p(x) = p(z = 0) p1(x | z = 0)

+ p(z = 1) p2(x | z = 1)
80/147

Structural properties

smoothness

decomposability

compatibility
sampling in a single backward pass

draw x ∼ p(X)
=⇒ exact sampling method

81/147

smooth + decomposable circuits = …

sample variables x1, . . . , xn from p(x)
=⇒ linear time in circuit size!

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147

smooth + decomposable circuits = …

If p(x) =
∑
i

wi pi(x)

(smoothness):
w

(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147

smooth + decomposable circuits = …

If p(x) =
∑
i

p(z = i) pi(x | z = i)

(smoothness):

sample z = i from p(z),
then sample x from pi(x | z = i)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147

smooth + decomposable circuits = …

If p(x) = p1(y) p2(z)

(decomposability):

sample y from p1 and z from p2
(as they are disjoint)

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147

smooth + decomposable circuits = …

Sample from simple input distributions:
⇒ easy for Categorical, Gaussian, …

w
(1)
ij

w
(2)
ij

f1(x1)

f2(x1)

h1(x3)

h2(x3)

g1(x2)

g2(x2)
p(x1, x2, x3)

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 82/147

x1

x2

x3

x4

x5

x6

x7

x8

X1 X2 X3 X4 X5

≈
pm(X)

...

q1(m)?

q2(m)?

qk(m)?

generative models that can reason probabilistically

83/147

…but some events are certain!

84/147

When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent Hierarchical Multi-Label Classification Networks”, 2020 85/147

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

nesy structured output prediction (SOP) tasks

Pogančić et al., “Differentiation of Blackbox Combinatorial Solvers”, 2020 86/147

When?

Ground Truth ResNet-18

neural nets struggle to satisfy validity constraints!

87/147

Constraint losses

Ground Truth ResNet-18 Semantic Loss

…but cannot guarantee consistency at test time!

Xu et al., “A semantic loss function for deep learning with symbolic knowledge”, 2018 88/147

SPL

Ground Truth ResNet-18 Semantic Loss circuits

you can predict valid paths 100% of the time!

89/147

How?

take an unreliable neural network architecture…

90/147

How?

……and replace the last layer with
a semantic probabilistic layer (SPL)

91/147

SPL

SPL

92/147

SPL

SPL

p(y | x) = qΘ(y | g(z))

qΘ(y | g(z)) is an expressive distribution over labels

92/147

SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

cK(x,y) encodes the constraint 1{x,y |= K}
92/147

SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)

a product of experts : (
92/147

SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

92/147

Goal

Can we design q and c

to be deep factorizations
yet yielding a tractable product?

93/147

Goal

Can we design q and c

to be deep factorizations
yet yielding a tractable product?

93/147

Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 94/147

SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))

95/147

SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

c

and a logical circuit c(y,x) encoding K

96/147

knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}

1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0}

1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147

knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147

knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}
1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147

knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}
1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147

knowledge compilation
(as a Boolean tensor factorization)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

Boolean tensor:K ∈ {0, 1}3

ky1y2y3 = 1{y1y2y3 |= K}
1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

×

1{Y3 = 1}

×

1{Y3 = 0}

cK(y1, y2, y3)

Pipatsrisawat and Darwiche, “New Compilation Languages Based on Structured
Decomposability.”, 2008 97/147

more tensor factorizations for NeSy at AAAI 2025

98/147

NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”, 2022 99/147

NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a Boolean circuit

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”, 2022 99/147

NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a Boolean circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”, 2022 99/147

NeSy AI recipe
with circuits (and tensor factorizations)

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take a
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a Boolean circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!

Ahmed et al., “Semantic probabilistic layers for neuro-symbolic learning”, 2022 99/147

SPLs
(and more circuits)

everywhere
100/147

constrained text generation with LLMs (ICML 2023)
101/147

reliable reinforcement learning (AAAI 23)

102/147

enforce constraints in knowledge graph embeddings
oral at NeurIPS 2023

103/147

Which structural properties
for complex reasoning

q1

∫
p(xo,xm)dXm

(missing values)
q2

Exc∼p(Xc|Xs=0) [f0(xc)]−
Exc∼p(Xc|Xs=1) [f1(xc)]
(fairness)

q3 Ee∼pnoise(E) [f(x+ e)]
(adversarial robust.)

smooth + decomposability compatibility compatibility
104/147

wait…!

“Given a reasoning task
can we automatically distill
a tractable algorithm for it?”

105/147

A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

106/147

A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits!
⇒ re-using intermediate transformations across queries

106/147

XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫

XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫

Tractable operators

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y)

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y)

JX ≥ γK

×

×

supp(p2)

log θ2

smooth, decomposable
deterministic

smooth, decomposable

108/147

XENT(p || q) =
∫
p(x) × log q(x) dX

p

q

log

r

×
s

∫

Tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

110/147

∫∫∫
p(x) × log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫

build a LEGO-like query calculus… 111/147

…and compositionally derive many more tractable algorithms

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 111/147

Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147

Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147

Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147

Takeaways

1 faster sampling routines for non-negative
factorizations

2 integration of logical constraints with guarantees

3 automatically distill efficient algorithms
for tensor networks via circuit properties

112/147

Questions?

outline

1 connecting tensor factorizations and circuits

2 a unifying pipeline to build factorizations & circuits

3 a property-driven approach to inference & reasoning

4 expressiveness analysis: known and new results

113/147

tl;dr

“Understand when and how
one factorization scheme can be
provably more expressive than others”

114/147

Expressiveness of tensor factorizations

We care about factorization methods that yield compact decompositions
(minimise memory footprint & computation)

“if rank(s) is exponential in d, then it is not useful!”
=⇒ storing T ∈ RM×···×M requiresO(Md)memory

One factorization method may require
exponentially smaller rank than others =⇒ it is more expressive

115/147

Expressiveness of tensor factorizations

We care about factorization methods that yield compact decompositions
(minimise memory footprint & computation)

“if rank(s) is exponential in d, then it is not useful!”
=⇒ storing T ∈ RM×···×M requiresO(Md)memory

One factorization method may require
exponentially smaller rank than others =⇒ it is more expressive

115/147

Expressiveness of tensor factorizations

We care about factorization methods that yield compact decompositions
(minimise memory footprint & computation)

“if rank(s) is exponential in d, then it is not useful!”
=⇒ storing T ∈ RM×···×M requiresO(Md)memory

One factorization method may require
exponentially smaller rank than others =⇒ it is more expressive

Cohen, Sharir, and Shashua, “On the Expressive Power of Deep Learning: A Tensor Analysis”, 2015 115/147

wait…!

what about circuits?

116/147

Expressiveness of circuits

A rigorous concept in circuit complexity theory

Expressiveness results of circuits based on the circuit size
=⇒ number of edges between units (amount of computation)

Different circuit classes have different expressive power

Valiant, “Negation can be exponentially powerful”, 1979
Darwiche and Marquis, “A knowledge compilation map”, 2002
Martens and Medabalimi, “On the expressive efficiency of sum product networks”, 2014 117/147

Expressiveness of circuits

A rigorous concept in circuit complexity theory

Expressiveness results of circuits based on the circuit size
=⇒ number of edges between units (amount of computation)

Different circuit classes have different expressive power

Valiant, “Negation can be exponentially powerful”, 1979
Darwiche and Marquis, “A knowledge compilation map”, 2002
Martens and Medabalimi, “On the expressive efficiency of sum product networks”, 2014 117/147

Expressiveness of circuits

A rigorous concept in circuit complexity theory

Expressiveness results of circuits based on the circuit size
=⇒ number of edges between units (amount of computation)

Different circuit classes have different expressive power

Valiant, “Negation can be exponentially powerful”, 1979
Darwiche and Marquis, “A knowledge compilation map”, 2002
Martens and Medabalimi, “On the expressive efficiency of sum product networks”, 2014 117/147

“Circuit complexity theory helps proving
stronger results for tensor factorizations”

118/147

Accepted at ICLR 2024 as a spotlight

119/147

Monotonic probabilistic circuits

Monotonic circuits
p(x) = 1

Z c(x), c(x) ≥ 0
where parameters and input functions are positive

(represent non-negative tensor factorizations [Cichocki and Phan 2009])

Choi, Vergari, and Van den Broeck, Probabilistic Circuits: A Unifying Framework for Tractable
Probabilistic Modeling, 2020 120/147

Monotonic probabilistic circuits

Monotonic circuits
p(x) = 1

Z c(x), c(x) ≥ 0
where parameters and input functions are positive

(represent non-negative tensor factorizations [Cichocki and Phan 2009])

Cichocki and Phan, “Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor
Factorizations”, 2009 120/147

A limitation of monotonic circuits

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+ • UDISJ

121/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large monotonic circuits…

122/147

Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+

±2

• UDISJ

123/147

Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

⊏⊏⊏⊐⊐⊐= set of distributions modeled by polysize circuits

+

±2

• UDISJ

123/147

Tractable product
thanks to circuit compatibility

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference”,
2021 124/147

Squared circuits
p(x) = 1

Z c2(x), c(x) ∈ R
where parameters and input functions can be negative

w
(1)
j

w
(2)
ij

f1(x1)

f2(x1)

h1(x2)

h2(x2)

g1(x3)

g2(x3)()
2
= w

(1)
j ·w(1)

k

w
(2)
ij ·w

(2)
kℓ

f
(x

1
)
⊗

f
(x

1
)

h
(x

2
)
⊗
h
(x

2
)

g
(x

3
)
⊗
g
(x

3
)

125/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large monotonic circuits…

126/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...()
2

…instead squared circuits require polynomial size

127/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...()
2

Squared circuitsmore expressive thanmonotonic ones

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 127/147

+

±2

• ? • UDISJ

“Can monotonic circuits be more expressive than squared?”

128/147

Squared circuits are sparse Born machines

A(1) A(2) A(3)

x1 x2 x3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

p(x1, x2, x3) ∝ (tx1x2x3)
2 (Born machine)

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

c(x1, x2, x3)

circuit compatible with itself

Schollwoeck, “The density-matrix renormalization group in the age of matrix product states”, 2010 129/147

Squared circuits are sparse Born machines

A(1) A(2) A(3)

x1 x2 x3

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

p(x1, x2, x3) ∝ (tx1x2x3)
2 (Born machine)

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

c(x1, x2, x3)

circuit compatible with itself

Schollwoeck, “The density-matrix renormalization group in the age of matrix product states”, 2010 129/147

Squared circuits are sparse Born machines

A(1) A(2) A(3)

x1 x2 x3

()
2

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

p(x1, x2, x3) ∝ (tx1x2x3)
2 (Born machine)

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

c(x1, x2, x3)

circuit compatible with itself

Schollwoeck, “The density-matrix renormalization group in the age of matrix product states”, 2010 129/147

Squared circuits are sparse Born machines

A(1) A(2) A(3)

x1 x2 x3

()
2

tx1x2x3 =
R∑

r1=1

R∑
r2=1

a(1)x1r1
a(2)r1x2r2

a(3)r2x3

p(x1, x2, x3) ∝ (tx1x2x3)
2 (Born machine)

a
(1)
x11

a
(1)
x12

a
(2)
x211

a
(2)
x221

a
(2)
x212

a
(2)
x222

a
(3)
x31

a
(3)
x32

()2

Schollwoeck, “The density-matrix renormalization group in the age of matrix product states”, 2010 129/147

A limitation of Born machines
(with real tensor-train factorization)

Proposition 5 (Glasser et al. 2019)

There exists non-negative tensors over 2d variables
that can be factorized as positive TT of constant rank 2, but
real Born machines have at least rank 2Ω(d).

“Can it be generalized to squared circuits?”

Glasser et al., “Expressive power of tensor-network factorizations for probabilistic modeling”, 2019 130/147

A limitation of Born machines
(with real tensor-train factorization)

Proposition 5 (Glasser et al. 2019)

There exists non-negative tensors over 2d variables
that can be factorized as positive TT of constant rank 2, but
real Born machines have at least rank 2Ω(d).

“Can it be generalized to squared circuits?”

Glasser et al., “Expressive power of tensor-network factorizations for probabilistic modeling”, 2019 130/147

+

±2

• SUM • UDISJ

“Can monotonic circuits be more expressive than squared?”

Yes!

131/147

Accepted at AAAI 2025
Poster #840, Hall E, Thursday February 27,

12:30pm-2:30pm

132/147

Wang and Van den Broeck
“On the Relationship Between Monotone

and Squared Probabilistic Circuits”
(also at AAAI 2025)

132/147

...

()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring polysize monotonic circuits…

133/147

... ()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…but require exponentially large squared circuits

133/147

... ()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

Squaring alone can reduce expressiveness!
(generalizes to factorizations other than tensor-trains)

133/147

+

±2

• SUM • UDISJ

• ?

“How to build circuits more expressive than both?”

134/147

Sum of squares (SOS) circuits
p(x) = 1

Z

∑r
i=1 c

2
i (x), ci(x) ∈ R

where parameters and input functions can be negative

+

±2Σ2

• SUM • UDISJ

• UPS • UTQ

135/147

Sum of squares (SOS) circuits
p(x) = 1

Z

∑r
i=1 c

2
i (x), ci(x) ∈ R

where parameters and input functions can be negative

+

±2Σ2

• SUM • UDISJ

• UPS • UTQ

135/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...()
2

Σ

()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

∃ p requiring exponentially large monotonic circuits…
136/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...()
2

Σ

()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…and also exponentially large squared circuits …
136/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...()
2

Σ

()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

…but a sum of squares (SOS) polysize circuits
136/147

· · ·

· · ·

· · ·

· · · · · ·

· · ·

...()
2

Σ

()
2

· · ·

· · ·

· · ·

· · · · · ·

· · ·

SOS can surpass both expressiveness limitations!
136/147

Experiments

107 108

1.2

1.3

1.4

BPD MNIST

108 109

5.0

5.2

5.4

5.6

5.8

parameters

BPD CelebA

+sd

±2
R
±2
C

+sd ·±2
C

Complex squared circuits are SOS (and scale better!)
137/147

Takeaways

1 factorizations and circuits expressiveness results…
bridge rank and circuit size

2 circuits can help proving stronger expressiveness results
e.g., results from Born machines to squared circuits

3 sum of squared circuits are more expressive (use them!)

138/147

Takeaways

1 factorizations and circuits expressiveness results…
bridge rank and circuit size

2 circuits can help proving stronger expressiveness results
e.g., results from Born machines to squared circuits

3 sum of squared circuits are more expressive (use them!)

138/147

Takeaways

1 factorizations and circuits expressiveness results…
bridge rank and circuit size

2 circuits can help proving stronger expressiveness results
e.g., results from Born machines to squared circuits

3 sum of squared circuits are more expressive (use them!)

138/147

Takeaways

1 factorizations and circuits expressiveness results…
bridge rank and circuit size

2 circuits can help proving stronger expressiveness results
e.g., results from Born machines to squared circuits

3 sum of squared circuits are more expressive (use them!)

138/147

Questions?

wait…!

conclusions…?

139/147

takeaway #1: unifying a fragmented literature

140/147

W3

W1 W2

takeaway #2: easily build novel factorizations
141/147

Ground Truth ResNet-18 Semantic Loss circuits

takeaway #3: use them for efficient & reliable
inference

142/147

+

±2Σ2

• SUM • UDISJ

• UPS • UTQ
108 109

5.0

5.2

5.4

5.6

5.8

parameters

BPD CelebA

+sd

±2
R
±2
C

+sd ·±2
C

takeaway #4: SOS circuits are provably more
expressive factorizations

143/147

accepted at TMLR featured certification
144/147

cirkitkit
learning & reasoning with circuits in pytorch

https://github.com/april-tools/cirkit

145/147

https://github.com/april-tools/cirkit

workshop at AAAI-25, March 4
april-tools.github.io/colorai/ 146/147

april-tools.github.io/colorai/

V(1)

x1

V(2)

x2

r

W (2)

V(3)

x3

W(1)

w
(1)
ij

w
(2)
ijk

v
(1)
x11

a
(1)
x12

a
(3)
x31

a
(3)
x32

a
(2)
x21

a
(2)
x22 c(x1, x2, x3)

questions?

147/147

